Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgdvds | Structured version Visualization version GIF version |
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgdvds.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgdvds.2 | ⊢ ∥ = (∥r‘𝑅) |
subrgdvds.3 | ⊢ 𝐸 = (∥r‘𝑆) |
Ref | Expression |
---|---|
subrgdvds | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgdvds.3 | . . . 4 ⊢ 𝐸 = (∥r‘𝑆) | |
2 | 1 | reldvdsr 19801 | . . 3 ⊢ Rel 𝐸 |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸) |
4 | subrgdvds.1 | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
5 | 4 | subrgbas 19948 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
6 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 6 | subrgss 19940 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
8 | 5, 7 | eqsstrrd 3956 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
9 | 8 | sseld 3916 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅))) |
10 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 4, 10 | ressmulr 16943 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
12 | 11 | oveqd 7272 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r‘𝑅)𝑥) = (𝑧(.r‘𝑆)𝑥)) |
13 | 12 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑆)𝑥) = 𝑦)) |
14 | 13 | rexbidv 3225 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
15 | ssrexv 3984 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | |
16 | 8, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
17 | 14, 16 | sylbird 259 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
18 | 9, 17 | anim12d 608 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
19 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
20 | eqid 2738 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
21 | 19, 1, 20 | dvdsr 19803 | . . . 4 ⊢ (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
22 | subrgdvds.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
23 | 6, 22, 10 | dvdsr 19803 | . . . 4 ⊢ (𝑥 ∥ 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
24 | 18, 21, 23 | 3imtr4g 295 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 → 𝑥 ∥ 𝑦)) |
25 | df-br 5071 | . . 3 ⊢ (𝑥𝐸𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐸) | |
26 | df-br 5071 | . . 3 ⊢ (𝑥 ∥ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∥ ) | |
27 | 24, 25, 26 | 3imtr3g 294 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (〈𝑥, 𝑦〉 ∈ 𝐸 → 〈𝑥, 𝑦〉 ∈ ∥ )) |
28 | 3, 27 | relssdv 5687 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 .rcmulr 16889 ∥rcdsr 19795 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-mulr 16902 df-subg 18667 df-ring 19700 df-dvdsr 19798 df-subrg 19937 |
This theorem is referenced by: subrguss 19954 |
Copyright terms: Public domain | W3C validator |