| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgdvds | Structured version Visualization version GIF version | ||
| Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgdvds.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgdvds.2 | ⊢ ∥ = (∥r‘𝑅) |
| subrgdvds.3 | ⊢ 𝐸 = (∥r‘𝑆) |
| Ref | Expression |
|---|---|
| subrgdvds | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdvds.3 | . . . 4 ⊢ 𝐸 = (∥r‘𝑆) | |
| 2 | 1 | reldvdsr 20269 | . . 3 ⊢ Rel 𝐸 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸) |
| 4 | subrgdvds.1 | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20490 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | 6 | subrgss 20481 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 8 | 5, 7 | eqsstrrd 3982 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 9 | 8 | sseld 3945 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅))) |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 4, 10 | ressmulr 17270 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | 11 | oveqd 7404 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r‘𝑅)𝑥) = (𝑧(.r‘𝑆)𝑥)) |
| 13 | 12 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 14 | 13 | rexbidv 3157 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 15 | ssrexv 4016 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | |
| 16 | 8, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 17 | 14, 16 | sylbird 260 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 18 | 9, 17 | anim12d 609 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
| 19 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 20 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 21 | 19, 1, 20 | dvdsr 20271 | . . . 4 ⊢ (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 22 | subrgdvds.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 23 | 6, 22, 10 | dvdsr 20271 | . . . 4 ⊢ (𝑥 ∥ 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 24 | 18, 21, 23 | 3imtr4g 296 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 → 𝑥 ∥ 𝑦)) |
| 25 | df-br 5108 | . . 3 ⊢ (𝑥𝐸𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐸) | |
| 26 | df-br 5108 | . . 3 ⊢ (𝑥 ∥ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∥ ) | |
| 27 | 24, 25, 26 | 3imtr3g 295 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (〈𝑥, 𝑦〉 ∈ 𝐸 → 〈𝑥, 𝑦〉 ∈ ∥ )) |
| 28 | 3, 27 | relssdv 5751 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 ∥rcdsr 20263 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-mulr 17234 df-subg 19055 df-ring 20144 df-dvdsr 20266 df-subrg 20479 |
| This theorem is referenced by: subrguss 20496 |
| Copyright terms: Public domain | W3C validator |