| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgdvds | Structured version Visualization version GIF version | ||
| Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgdvds.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgdvds.2 | ⊢ ∥ = (∥r‘𝑅) |
| subrgdvds.3 | ⊢ 𝐸 = (∥r‘𝑆) |
| Ref | Expression |
|---|---|
| subrgdvds | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdvds.3 | . . . 4 ⊢ 𝐸 = (∥r‘𝑆) | |
| 2 | 1 | reldvdsr 20263 | . . 3 ⊢ Rel 𝐸 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸) |
| 4 | subrgdvds.1 | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20484 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | 6 | subrgss 20475 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 8 | 5, 7 | eqsstrrd 3973 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 9 | 8 | sseld 3936 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅))) |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 4, 10 | ressmulr 17229 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | 11 | oveqd 7370 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r‘𝑅)𝑥) = (𝑧(.r‘𝑆)𝑥)) |
| 13 | 12 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 14 | 13 | rexbidv 3153 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 15 | ssrexv 4007 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | |
| 16 | 8, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 17 | 14, 16 | sylbird 260 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 18 | 9, 17 | anim12d 609 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
| 19 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 20 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 21 | 19, 1, 20 | dvdsr 20265 | . . . 4 ⊢ (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
| 22 | subrgdvds.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 23 | 6, 22, 10 | dvdsr 20265 | . . . 4 ⊢ (𝑥 ∥ 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
| 24 | 18, 21, 23 | 3imtr4g 296 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 → 𝑥 ∥ 𝑦)) |
| 25 | df-br 5096 | . . 3 ⊢ (𝑥𝐸𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐸) | |
| 26 | df-br 5096 | . . 3 ⊢ (𝑥 ∥ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∥ ) | |
| 27 | 24, 25, 26 | 3imtr3g 295 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (〈𝑥, 𝑦〉 ∈ 𝐸 → 〈𝑥, 𝑦〉 ∈ ∥ )) |
| 28 | 3, 27 | relssdv 5735 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 .rcmulr 17180 ∥rcdsr 20257 SubRingcsubrg 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-mulr 17193 df-subg 19020 df-ring 20138 df-dvdsr 20260 df-subrg 20473 |
| This theorem is referenced by: subrguss 20490 |
| Copyright terms: Public domain | W3C validator |