![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgdvds | Structured version Visualization version GIF version |
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgdvds.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgdvds.2 | ⊢ ∥ = (∥r‘𝑅) |
subrgdvds.3 | ⊢ 𝐸 = (∥r‘𝑆) |
Ref | Expression |
---|---|
subrgdvds | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgdvds.3 | . . . 4 ⊢ 𝐸 = (∥r‘𝑆) | |
2 | 1 | reldvdsr 19072 | . . 3 ⊢ Rel 𝐸 |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸) |
4 | subrgdvds.1 | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
5 | 4 | subrgbas 19222 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
6 | eqid 2793 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 6 | subrgss 19214 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
8 | 5, 7 | eqsstrrd 3922 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
9 | 8 | sseld 3883 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅))) |
10 | eqid 2793 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 4, 10 | ressmulr 16442 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
12 | 11 | oveqd 7024 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r‘𝑅)𝑥) = (𝑧(.r‘𝑆)𝑥)) |
13 | 12 | eqeq1d 2795 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑆)𝑥) = 𝑦)) |
14 | 13 | rexbidv 3257 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
15 | ssrexv 3950 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | |
16 | 8, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
17 | 14, 16 | sylbird 261 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
18 | 9, 17 | anim12d 608 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
19 | eqid 2793 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
20 | eqid 2793 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
21 | 19, 1, 20 | dvdsr 19074 | . . . 4 ⊢ (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
22 | subrgdvds.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
23 | 6, 22, 10 | dvdsr 19074 | . . . 4 ⊢ (𝑥 ∥ 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
24 | 18, 21, 23 | 3imtr4g 297 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 → 𝑥 ∥ 𝑦)) |
25 | df-br 4957 | . . 3 ⊢ (𝑥𝐸𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐸) | |
26 | df-br 4957 | . . 3 ⊢ (𝑥 ∥ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∥ ) | |
27 | 24, 25, 26 | 3imtr3g 296 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (〈𝑥, 𝑦〉 ∈ 𝐸 → 〈𝑥, 𝑦〉 ∈ ∥ )) |
28 | 3, 27 | relssdv 5539 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∃wrex 3104 ⊆ wss 3854 〈cop 4472 class class class wbr 4956 Rel wrel 5440 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 ↾s cress 16301 .rcmulr 16383 ∥rcdsr 19066 SubRingcsubrg 19209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-mulr 16396 df-subg 18018 df-ring 18977 df-dvdsr 19069 df-subrg 19211 |
This theorem is referenced by: subrguss 19228 |
Copyright terms: Public domain | W3C validator |