MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgdvds Structured version   Visualization version   GIF version

Theorem subrgdvds 19814
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1 𝑆 = (𝑅s 𝐴)
subrgdvds.2 = (∥r𝑅)
subrgdvds.3 𝐸 = (∥r𝑆)
Assertion
Ref Expression
subrgdvds (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )

Proof of Theorem subrgdvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.3 . . . 4 𝐸 = (∥r𝑆)
21reldvdsr 19662 . . 3 Rel 𝐸
32a1i 11 . 2 (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸)
4 subrgdvds.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
54subrgbas 19809 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
6 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
76subrgss 19801 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
85, 7eqsstrrd 3940 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
98sseld 3900 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅)))
10 eqid 2737 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
114, 10ressmulr 16848 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1211oveqd 7230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r𝑅)𝑥) = (𝑧(.r𝑆)𝑥))
1312eqeq1d 2739 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r𝑅)𝑥) = 𝑦 ↔ (𝑧(.r𝑆)𝑥) = 𝑦))
1413rexbidv 3216 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
15 ssrexv 3968 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
168, 15syl 17 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
1714, 16sylbird 263 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
189, 17anim12d 612 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
19 eqid 2737 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2737 . . . . 5 (.r𝑆) = (.r𝑆)
2119, 1, 20dvdsr 19664 . . . 4 (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
22 subrgdvds.2 . . . . 5 = (∥r𝑅)
236, 22, 10dvdsr 19664 . . . 4 (𝑥 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2418, 21, 233imtr4g 299 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦𝑥 𝑦))
25 df-br 5054 . . 3 (𝑥𝐸𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐸)
26 df-br 5054 . . 3 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
2724, 25, 263imtr3g 298 . 2 (𝐴 ∈ (SubRing‘𝑅) → (⟨𝑥, 𝑦⟩ ∈ 𝐸 → ⟨𝑥, 𝑦⟩ ∈ ))
283, 27relssdv 5658 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062  wss 3866  cop 4547   class class class wbr 5053  Rel wrel 5556  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  .rcmulr 16803  rcdsr 19656  SubRingcsubrg 19796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-mulr 16816  df-subg 18540  df-ring 19564  df-dvdsr 19659  df-subrg 19798
This theorem is referenced by:  subrguss  19815
  Copyright terms: Public domain W3C validator