![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvres2 | Structured version Visualization version GIF version |
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25961, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres2 | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6026 | . . 3 ⊢ Rel ((𝑆 D 𝐹) ↾ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵)) |
3 | eqid 2735 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
4 | eqid 2735 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
5 | eqid 2735 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
6 | simp1l 1196 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ) | |
7 | simp1r 1197 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ) | |
8 | simp2l 1198 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐴 ⊆ 𝑆) | |
9 | simp2r 1199 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐵 ⊆ 𝑆) | |
10 | simp3r 1201 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦) | |
11 | 6, 7, 8 | dvcl 25949 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
12 | 10, 11 | mpdan 687 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ) |
13 | simp3l 1200 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥 ∈ 𝐵) | |
14 | 3, 4, 5, 6, 7, 8, 9, 12, 10, 13 | dvres2lem 25960 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦) |
15 | 14 | 3expia 1120 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦)) |
16 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
17 | 16 | brresi 6009 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
18 | df-br 5149 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) | |
19 | 17, 18 | bitr3i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) |
20 | df-br 5149 | . . 3 ⊢ (𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵))) | |
21 | 15, 19, 20 | 3imtr3g 295 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵)))) |
22 | 2, 21 | relssdv 5801 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 〈cop 4637 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5691 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 − cmin 11490 / cdiv 11918 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-cnp 23252 df-xms 24346 df-ms 24347 df-limc 25916 df-dv 25917 |
This theorem is referenced by: dvres3 25963 dvres3a 25964 |
Copyright terms: Public domain | W3C validator |