![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvres2 | Structured version Visualization version GIF version |
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25662, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like β(π₯) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres2 | β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β ((π D πΉ) βΎ π΅) β (π΅ D (πΉ βΎ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6011 | . . 3 β’ Rel ((π D πΉ) βΎ π΅) | |
2 | 1 | a1i 11 | . 2 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β Rel ((π D πΉ) βΎ π΅)) |
3 | eqid 2730 | . . . . 5 β’ (TopOpenββfld) = (TopOpenββfld) | |
4 | eqid 2730 | . . . . 5 β’ ((TopOpenββfld) βΎt π) = ((TopOpenββfld) βΎt π) | |
5 | eqid 2730 | . . . . 5 β’ (π§ β (π΄ β {π₯}) β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) = (π§ β (π΄ β {π₯}) β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) | |
6 | simp1l 1195 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π β β) | |
7 | simp1r 1196 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β πΉ:π΄βΆβ) | |
8 | simp2l 1197 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π΄ β π) | |
9 | simp2r 1198 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π΅ β π) | |
10 | simp3r 1200 | . . . . . 6 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π₯(π D πΉ)π¦) | |
11 | 6, 7, 8 | dvcl 25650 | . . . . . 6 β’ ((((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β§ π₯(π D πΉ)π¦) β π¦ β β) |
12 | 10, 11 | mpdan 683 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π¦ β β) |
13 | simp3l 1199 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π₯ β π΅) | |
14 | 3, 4, 5, 6, 7, 8, 9, 12, 10, 13 | dvres2lem 25661 | . . . 4 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π) β§ (π₯ β π΅ β§ π₯(π D πΉ)π¦)) β π₯(π΅ D (πΉ βΎ π΅))π¦) |
15 | 14 | 3expia 1119 | . . 3 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β ((π₯ β π΅ β§ π₯(π D πΉ)π¦) β π₯(π΅ D (πΉ βΎ π΅))π¦)) |
16 | vex 3476 | . . . . 5 β’ π¦ β V | |
17 | 16 | brresi 5991 | . . . 4 β’ (π₯((π D πΉ) βΎ π΅)π¦ β (π₯ β π΅ β§ π₯(π D πΉ)π¦)) |
18 | df-br 5150 | . . . 4 β’ (π₯((π D πΉ) βΎ π΅)π¦ β β¨π₯, π¦β© β ((π D πΉ) βΎ π΅)) | |
19 | 17, 18 | bitr3i 276 | . . 3 β’ ((π₯ β π΅ β§ π₯(π D πΉ)π¦) β β¨π₯, π¦β© β ((π D πΉ) βΎ π΅)) |
20 | df-br 5150 | . . 3 β’ (π₯(π΅ D (πΉ βΎ π΅))π¦ β β¨π₯, π¦β© β (π΅ D (πΉ βΎ π΅))) | |
21 | 15, 19, 20 | 3imtr3g 294 | . 2 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β (β¨π₯, π¦β© β ((π D πΉ) βΎ π΅) β β¨π₯, π¦β© β (π΅ D (πΉ βΎ π΅)))) |
22 | 2, 21 | relssdv 5789 | 1 β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β ((π D πΉ) βΎ π΅) β (π΅ D (πΉ βΎ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 β wcel 2104 β cdif 3946 β wss 3949 {csn 4629 β¨cop 4635 class class class wbr 5149 β¦ cmpt 5232 βΎ cres 5679 Rel wrel 5682 βΆwf 6540 βcfv 6544 (class class class)co 7413 βcc 11112 β cmin 11450 / cdiv 11877 βΎt crest 17372 TopOpenctopn 17373 βfldccnfld 21146 D cdv 25614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fi 9410 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-fz 13491 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-rest 17374 df-topn 17375 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-cnfld 21147 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-cnp 22954 df-xms 24048 df-ms 24049 df-limc 25617 df-dv 25618 |
This theorem is referenced by: dvres3 25664 dvres3a 25665 |
Copyright terms: Public domain | W3C validator |