MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2 Structured version   Visualization version   GIF version

Theorem dvres2 25811
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25810, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
dvres2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))

Proof of Theorem dvres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5956 . . 3 Rel ((𝑆 D 𝐹) ↾ 𝐵)
21a1i 11 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵))
3 eqid 2729 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4 eqid 2729 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
5 eqid 2729 . . . . 5 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6 simp1l 1198 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ)
7 simp1r 1199 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ)
8 simp2l 1200 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐴𝑆)
9 simp2r 1201 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐵𝑆)
10 simp3r 1203 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦)
116, 7, 8dvcl 25798 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
1210, 11mpdan 687 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ)
13 simp3l 1202 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥𝐵)
143, 4, 5, 6, 7, 8, 9, 12, 10, 13dvres2lem 25809 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹𝐵))𝑦)
15143expia 1121 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹𝐵))𝑦))
16 vex 3440 . . . . 5 𝑦 ∈ V
1716brresi 5939 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦))
18 df-br 5093 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
1917, 18bitr3i 277 . . 3 ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
20 df-br 5093 . . 3 (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵)))
2115, 19, 203imtr3g 295 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵))))
222, 21relssdv 5731 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cdif 3900  wss 3903  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173  cres 5621  Rel wrel 5624  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cmin 11347   / cdiv 11777  t crest 17324  TopOpenctopn 17325  fldccnfld 21261   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-cnp 23113  df-xms 24206  df-ms 24207  df-limc 25765  df-dv 25766
This theorem is referenced by:  dvres3  25812  dvres3a  25813
  Copyright terms: Public domain W3C validator