MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2 Structured version   Visualization version   GIF version

Theorem dvres2 25276
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25275, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
dvres2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))

Proof of Theorem dvres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5966 . . 3 Rel ((𝑆 D 𝐹) ↾ 𝐵)
21a1i 11 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵))
3 eqid 2736 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4 eqid 2736 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
5 eqid 2736 . . . . 5 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6 simp1l 1197 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ)
7 simp1r 1198 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ)
8 simp2l 1199 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐴𝑆)
9 simp2r 1200 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐵𝑆)
10 simp3r 1202 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦)
116, 7, 8dvcl 25263 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
1210, 11mpdan 685 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ)
13 simp3l 1201 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥𝐵)
143, 4, 5, 6, 7, 8, 9, 12, 10, 13dvres2lem 25274 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹𝐵))𝑦)
15143expia 1121 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹𝐵))𝑦))
16 vex 3449 . . . . 5 𝑦 ∈ V
1716brresi 5946 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦))
18 df-br 5106 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
1917, 18bitr3i 276 . . 3 ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
20 df-br 5106 . . 3 (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵)))
2115, 19, 203imtr3g 294 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵))))
222, 21relssdv 5744 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  cdif 3907  wss 3910  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188  cres 5635  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cmin 11385   / cdiv 11812  t crest 17302  TopOpenctopn 17303  fldccnfld 20796   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvres3  25277  dvres3a  25278
  Copyright terms: Public domain W3C validator