| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvres2 | Structured version Visualization version GIF version | ||
| Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25864, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvres2 | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5992 | . . 3 ⊢ Rel ((𝑆 D 𝐹) ↾ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵)) |
| 3 | eqid 2735 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 4 | eqid 2735 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
| 6 | simp1l 1198 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ) | |
| 7 | simp1r 1199 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ) | |
| 8 | simp2l 1200 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐴 ⊆ 𝑆) | |
| 9 | simp2r 1201 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐵 ⊆ 𝑆) | |
| 10 | simp3r 1203 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦) | |
| 11 | 6, 7, 8 | dvcl 25852 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
| 12 | 10, 11 | mpdan 687 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ) |
| 13 | simp3l 1202 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥 ∈ 𝐵) | |
| 14 | 3, 4, 5, 6, 7, 8, 9, 12, 10, 13 | dvres2lem 25863 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦) |
| 15 | 14 | 3expia 1121 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦)) |
| 16 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 17 | 16 | brresi 5975 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
| 18 | df-br 5120 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) | |
| 19 | 17, 18 | bitr3i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) |
| 20 | df-br 5120 | . . 3 ⊢ (𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵))) | |
| 21 | 15, 19, 20 | 3imtr3g 295 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵)))) |
| 22 | 2, 21 | relssdv 5767 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 〈cop 4607 class class class wbr 5119 ↦ cmpt 5201 ↾ cres 5656 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 − cmin 11466 / cdiv 11894 ↾t crest 17434 TopOpenctopn 17435 ℂfldccnfld 21315 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-cnp 23166 df-xms 24259 df-ms 24260 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: dvres3 25866 dvres3a 25867 |
| Copyright terms: Public domain | W3C validator |