![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvres2 | Structured version Visualization version GIF version |
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25275, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres2 | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5966 | . . 3 ⊢ Rel ((𝑆 D 𝐹) ↾ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵)) |
3 | eqid 2736 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
4 | eqid 2736 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
5 | eqid 2736 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
6 | simp1l 1197 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ) | |
7 | simp1r 1198 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ) | |
8 | simp2l 1199 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐴 ⊆ 𝑆) | |
9 | simp2r 1200 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝐵 ⊆ 𝑆) | |
10 | simp3r 1202 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦) | |
11 | 6, 7, 8 | dvcl 25263 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
12 | 10, 11 | mpdan 685 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ) |
13 | simp3l 1201 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥 ∈ 𝐵) | |
14 | 3, 4, 5, 6, 7, 8, 9, 12, 10, 13 | dvres2lem 25274 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦) |
15 | 14 | 3expia 1121 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦)) |
16 | vex 3449 | . . . . 5 ⊢ 𝑦 ∈ V | |
17 | 16 | brresi 5946 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
18 | df-br 5106 | . . . 4 ⊢ (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) | |
19 | 17, 18 | bitr3i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥(𝑆 D 𝐹)𝑦) ↔ 〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵)) |
20 | df-br 5106 | . . 3 ⊢ (𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵))) | |
21 | 15, 19, 20 | 3imtr3g 294 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (〈𝑥, 𝑦〉 ∈ ((𝑆 D 𝐹) ↾ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 D (𝐹 ↾ 𝐵)))) |
22 | 2, 21 | relssdv 5744 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ∖ cdif 3907 ⊆ wss 3910 {csn 4586 〈cop 4592 class class class wbr 5105 ↦ cmpt 5188 ↾ cres 5635 Rel wrel 5638 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 − cmin 11385 / cdiv 11812 ↾t crest 17302 TopOpenctopn 17303 ℂfldccnfld 20796 D cdv 25227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-fz 13425 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-starv 17148 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-rest 17304 df-topn 17305 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-cnp 22579 df-xms 23673 df-ms 23674 df-limc 25230 df-dv 25231 |
This theorem is referenced by: dvres3 25277 dvres3a 25278 |
Copyright terms: Public domain | W3C validator |