![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3sstr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | sseq12d 4028 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷)) |
5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 |
This theorem is referenced by: cnvtsr 18645 dprdss 20063 dprd2da 20076 dmdprdsplit2lem 20079 mplind 22111 txcmplem1 23664 setsmstopn 24505 tngtopn 24686 bcthlem2 25372 bcthlem4 25374 uniiccvol 25628 dyadmaxlem 25645 dvlip2 26048 dvne0 26064 shlej2 31389 gsumzresunsn 33041 pmtrcnel2 33092 cyc3co2 33142 ssdifidllem 33463 fedgmullem1 33656 hauseqcn 33858 bnd2lem 37777 heiborlem8 37804 dochord 41352 lclkrlem2p 41504 mapdsn 41623 hbtlem5 43116 oaabsb 43283 omabs2 43321 fvmptiunrelexplb0d 43673 fvmptiunrelexplb1d 43675 ovolval5lem3 46609 isclatd 48771 |
Copyright terms: Public domain | W3C validator |