![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3sstr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | sseq12d 4042 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷)) |
5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: cnvtsr 18658 dprdss 20073 dprd2da 20086 dmdprdsplit2lem 20089 mplind 22117 txcmplem1 23670 setsmstopn 24511 tngtopn 24692 bcthlem2 25378 bcthlem4 25380 uniiccvol 25634 dyadmaxlem 25651 dvlip2 26054 dvne0 26070 shlej2 31393 gsumzresunsn 33037 pmtrcnel2 33083 cyc3co2 33133 ssdifidllem 33449 fedgmullem1 33642 hauseqcn 33844 bnd2lem 37751 heiborlem8 37778 dochord 41327 lclkrlem2p 41479 mapdsn 41598 hbtlem5 43085 oaabsb 43256 omabs2 43294 fvmptiunrelexplb0d 43646 fvmptiunrelexplb1d 43648 ovolval5lem3 46575 isclatd 48655 |
Copyright terms: Public domain | W3C validator |