| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3985 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3986 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: cnvtsr 18554 dprdss 19968 dprd2da 19981 dmdprdsplit2lem 19984 mplind 21984 txcmplem1 23535 setsmstopn 24373 tngtopn 24545 bcthlem2 25232 bcthlem4 25234 uniiccvol 25488 dyadmaxlem 25505 dvlip2 25907 dvne0 25923 shlej2 31297 gsumzresunsn 33003 pmtrcnel2 33054 cyc3co2 33104 ssdifidllem 33434 fedgmullem1 33632 hauseqcn 33895 bnd2lem 37792 heiborlem8 37819 dochord 41371 lclkrlem2p 41523 mapdsn 41642 hbtlem5 43124 oaabsb 43290 omabs2 43328 fvmptiunrelexplb0d 43680 fvmptiunrelexplb1d 43682 ovolval5lem3 46659 isclatd 48975 |
| Copyright terms: Public domain | W3C validator |