Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3sstr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | sseq12d 3950 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: cnvtsr 18221 dprdss 19547 dprd2da 19560 dmdprdsplit2lem 19563 mplind 21188 txcmplem1 22700 setsmstopn 23539 tngtopn 23720 bcthlem2 24394 bcthlem4 24396 uniiccvol 24649 dyadmaxlem 24666 dvlip2 25064 dvne0 25080 shlej2 29624 gsumzresunsn 31216 pmtrcnel2 31261 cyc3co2 31309 fedgmullem1 31612 hauseqcn 31750 bnd2lem 35876 heiborlem8 35903 dochord 39311 lclkrlem2p 39463 mapdsn 39582 hbtlem5 40869 fvmptiunrelexplb0d 41181 fvmptiunrelexplb1d 41183 isclatd 46157 |
Copyright terms: Public domain | W3C validator |