Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 4013
 Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 4000 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 234 1 (𝜑𝐶𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1533   ⊆ wss 3936 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-in 3943  df-ss 3952 This theorem is referenced by:  cnvtsr  17826  dprdss  19145  dprd2da  19158  dmdprdsplit2lem  19161  mplind  20276  txcmplem1  22243  setsmstopn  23082  tngtopn  23253  bcthlem2  23922  bcthlem4  23924  uniiccvol  24175  dyadmaxlem  24192  dvlip2  24586  dvne0  24602  shlej2  29132  gsumzresunsn  30686  pmtrcnel2  30729  cyc3co2  30777  fedgmullem1  31020  hauseqcn  31133  bnd2lem  35063  heiborlem8  35090  dochord  38500  lclkrlem2p  38652  mapdsn  38771  hbtlem5  39721  fvmptiunrelexplb0d  40022  fvmptiunrelexplb1d  40024
 Copyright terms: Public domain W3C validator