| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3966 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3967 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: cnvtsr 18498 dprdss 19947 dprd2da 19960 dmdprdsplit2lem 19963 mplind 22008 txcmplem1 23559 setsmstopn 24396 tngtopn 24568 bcthlem2 25255 bcthlem4 25257 uniiccvol 25511 dyadmaxlem 25528 dvlip2 25930 dvne0 25946 shlej2 31345 gsumzresunsn 33045 pmtrcnel2 33068 cyc3co2 33118 ssdifidllem 33430 fedgmullem1 33665 hauseqcn 33934 bnd2lem 37854 heiborlem8 37881 dochord 41492 lclkrlem2p 41644 mapdsn 41763 hbtlem5 43248 oaabsb 43414 omabs2 43452 fvmptiunrelexplb0d 43804 fvmptiunrelexplb1d 43806 ovolval5lem3 46779 isclatd 49110 |
| Copyright terms: Public domain | W3C validator |