| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3970 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3971 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 |
| This theorem is referenced by: cnvtsr 18494 dprdss 19944 dprd2da 19957 dmdprdsplit2lem 19960 mplind 22006 txcmplem1 23557 setsmstopn 24394 tngtopn 24566 bcthlem2 25253 bcthlem4 25255 uniiccvol 25509 dyadmaxlem 25526 dvlip2 25928 dvne0 25944 shlej2 31339 gsumzresunsn 33034 pmtrcnel2 33057 cyc3co2 33107 ssdifidllem 33419 fedgmullem1 33640 hauseqcn 33909 bnd2lem 37837 heiborlem8 37864 dochord 41415 lclkrlem2p 41567 mapdsn 41686 hbtlem5 43167 oaabsb 43333 omabs2 43371 fvmptiunrelexplb0d 43723 fvmptiunrelexplb1d 43725 ovolval5lem3 46698 isclatd 49020 |
| Copyright terms: Public domain | W3C validator |