MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 4001
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
2 3sstr3d.1 . . 3 (𝜑𝐴𝐵)
31, 2eqsstrrd 3982 . 2 (𝜑𝐶𝐵)
4 3sstr3d.3 . 2 (𝜑𝐵 = 𝐷)
53, 4sseqtrd 3983 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931
This theorem is referenced by:  cnvtsr  18547  dprdss  19961  dprd2da  19974  dmdprdsplit2lem  19977  mplind  21977  txcmplem1  23528  setsmstopn  24366  tngtopn  24538  bcthlem2  25225  bcthlem4  25227  uniiccvol  25481  dyadmaxlem  25498  dvlip2  25900  dvne0  25916  shlej2  31290  gsumzresunsn  32996  pmtrcnel2  33047  cyc3co2  33097  ssdifidllem  33427  fedgmullem1  33625  hauseqcn  33888  bnd2lem  37785  heiborlem8  37812  dochord  41364  lclkrlem2p  41516  mapdsn  41635  hbtlem5  43117  oaabsb  43283  omabs2  43321  fvmptiunrelexplb0d  43673  fvmptiunrelexplb1d  43675  ovolval5lem3  46652  isclatd  48971
  Copyright terms: Public domain W3C validator