| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3973 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3974 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 |
| This theorem is referenced by: cnvtsr 18512 dprdss 19928 dprd2da 19941 dmdprdsplit2lem 19944 mplind 21993 txcmplem1 23544 setsmstopn 24382 tngtopn 24554 bcthlem2 25241 bcthlem4 25243 uniiccvol 25497 dyadmaxlem 25514 dvlip2 25916 dvne0 25932 shlej2 31323 gsumzresunsn 33022 pmtrcnel2 33045 cyc3co2 33095 ssdifidllem 33406 fedgmullem1 33604 hauseqcn 33867 bnd2lem 37773 heiborlem8 37800 dochord 41352 lclkrlem2p 41504 mapdsn 41623 hbtlem5 43104 oaabsb 43270 omabs2 43308 fvmptiunrelexplb0d 43660 fvmptiunrelexplb1d 43662 ovolval5lem3 46639 isclatd 48971 |
| Copyright terms: Public domain | W3C validator |