MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 4028
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 4015 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 231 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  cnvtsr  18543  dprdss  19901  dprd2da  19914  dmdprdsplit2lem  19917  mplind  21637  txcmplem1  23152  setsmstopn  23993  tngtopn  24174  bcthlem2  24849  bcthlem4  24851  uniiccvol  25104  dyadmaxlem  25121  dvlip2  25519  dvne0  25535  shlej2  30652  gsumzresunsn  32247  pmtrcnel2  32292  cyc3co2  32340  fedgmullem1  32773  hauseqcn  32947  bnd2lem  36745  heiborlem8  36772  dochord  40327  lclkrlem2p  40479  mapdsn  40598  hbtlem5  41952  oaabsb  42126  omabs2  42164  fvmptiunrelexplb0d  42517  fvmptiunrelexplb1d  42519  ovolval5lem3  45449  isclatd  47686
  Copyright terms: Public domain W3C validator