MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 4055
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 4042 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 232 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993
This theorem is referenced by:  cnvtsr  18658  dprdss  20073  dprd2da  20086  dmdprdsplit2lem  20089  mplind  22117  txcmplem1  23670  setsmstopn  24511  tngtopn  24692  bcthlem2  25378  bcthlem4  25380  uniiccvol  25634  dyadmaxlem  25651  dvlip2  26054  dvne0  26070  shlej2  31393  gsumzresunsn  33037  pmtrcnel2  33083  cyc3co2  33133  ssdifidllem  33449  fedgmullem1  33642  hauseqcn  33844  bnd2lem  37751  heiborlem8  37778  dochord  41327  lclkrlem2p  41479  mapdsn  41598  hbtlem5  43085  oaabsb  43256  omabs2  43294  fvmptiunrelexplb0d  43646  fvmptiunrelexplb1d  43648  ovolval5lem3  46575  isclatd  48655
  Copyright terms: Public domain W3C validator