| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3994 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3995 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: cnvtsr 18598 dprdss 20012 dprd2da 20025 dmdprdsplit2lem 20028 mplind 22028 txcmplem1 23579 setsmstopn 24417 tngtopn 24589 bcthlem2 25277 bcthlem4 25279 uniiccvol 25533 dyadmaxlem 25550 dvlip2 25952 dvne0 25968 shlej2 31342 gsumzresunsn 33050 pmtrcnel2 33101 cyc3co2 33151 ssdifidllem 33471 fedgmullem1 33669 hauseqcn 33929 bnd2lem 37815 heiborlem8 37842 dochord 41389 lclkrlem2p 41541 mapdsn 41660 hbtlem5 43152 oaabsb 43318 omabs2 43356 fvmptiunrelexplb0d 43708 fvmptiunrelexplb1d 43710 ovolval5lem3 46683 isclatd 48957 |
| Copyright terms: Public domain | W3C validator |