MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 3963
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 3950 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 231 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  cnvtsr  18221  dprdss  19547  dprd2da  19560  dmdprdsplit2lem  19563  mplind  21188  txcmplem1  22700  setsmstopn  23539  tngtopn  23720  bcthlem2  24394  bcthlem4  24396  uniiccvol  24649  dyadmaxlem  24666  dvlip2  25064  dvne0  25080  shlej2  29624  gsumzresunsn  31216  pmtrcnel2  31261  cyc3co2  31309  fedgmullem1  31612  hauseqcn  31750  bnd2lem  35876  heiborlem8  35903  dochord  39311  lclkrlem2p  39463  mapdsn  39582  hbtlem5  40869  fvmptiunrelexplb0d  41181  fvmptiunrelexplb1d  41183  isclatd  46157
  Copyright terms: Public domain W3C validator