MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 4027
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 4014 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 231 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3954  df-ss 3964
This theorem is referenced by:  cnvtsr  18545  dprdss  19940  dprd2da  19953  dmdprdsplit2lem  19956  mplind  21850  txcmplem1  23365  setsmstopn  24206  tngtopn  24387  bcthlem2  25073  bcthlem4  25075  uniiccvol  25329  dyadmaxlem  25346  dvlip2  25747  dvne0  25763  shlej2  30881  gsumzresunsn  32476  pmtrcnel2  32521  cyc3co2  32569  fedgmullem1  33002  hauseqcn  33176  bnd2lem  36962  heiborlem8  36989  dochord  40544  lclkrlem2p  40696  mapdsn  40815  hbtlem5  42172  oaabsb  42346  omabs2  42384  fvmptiunrelexplb0d  42737  fvmptiunrelexplb1d  42739  ovolval5lem3  45668  isclatd  47695
  Copyright terms: Public domain W3C validator