MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3d Structured version   Visualization version   GIF version

Theorem 3sstr3d 3989
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
2 3sstr3d.1 . . 3 (𝜑𝐴𝐵)
31, 2eqsstrrd 3970 . 2 (𝜑𝐶𝐵)
4 3sstr3d.3 . 2 (𝜑𝐵 = 𝐷)
53, 4sseqtrd 3971 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3919
This theorem is referenced by:  cnvtsr  18494  dprdss  19944  dprd2da  19957  dmdprdsplit2lem  19960  mplind  22006  txcmplem1  23557  setsmstopn  24394  tngtopn  24566  bcthlem2  25253  bcthlem4  25255  uniiccvol  25509  dyadmaxlem  25526  dvlip2  25928  dvne0  25944  shlej2  31339  gsumzresunsn  33034  pmtrcnel2  33057  cyc3co2  33107  ssdifidllem  33419  fedgmullem1  33640  hauseqcn  33909  bnd2lem  37837  heiborlem8  37864  dochord  41415  lclkrlem2p  41567  mapdsn  41686  hbtlem5  43167  oaabsb  43333  omabs2  43371  fvmptiunrelexplb0d  43723  fvmptiunrelexplb1d  43725  ovolval5lem3  46698  isclatd  49020
  Copyright terms: Public domain W3C validator