| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3sstr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrrd 3982 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | sseqtrd 3983 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: cnvtsr 18547 dprdss 19961 dprd2da 19974 dmdprdsplit2lem 19977 mplind 21977 txcmplem1 23528 setsmstopn 24366 tngtopn 24538 bcthlem2 25225 bcthlem4 25227 uniiccvol 25481 dyadmaxlem 25498 dvlip2 25900 dvne0 25916 shlej2 31290 gsumzresunsn 32996 pmtrcnel2 33047 cyc3co2 33097 ssdifidllem 33427 fedgmullem1 33625 hauseqcn 33888 bnd2lem 37785 heiborlem8 37812 dochord 41364 lclkrlem2p 41516 mapdsn 41635 hbtlem5 43117 oaabsb 43283 omabs2 43321 fvmptiunrelexplb0d 43673 fvmptiunrelexplb1d 43675 ovolval5lem3 46652 isclatd 48971 |
| Copyright terms: Public domain | W3C validator |