Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0d 40385
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0d.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0d (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0d
StepHypRef Expression
1 fvmptiunrelexplb0d.0 . . 3 (𝜑 → 0 ∈ 𝑁)
2 oveq2 7143 . . . 4 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
32ssiun2s 4935 . . 3 (0 ∈ 𝑁 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb0d.r . . 3 (𝜑𝑅 ∈ V)
6 relexp0g 14373 . . 3 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
75, 6syl 17 . 2 (𝜑 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8 fvmptiunrelexplb0d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
9 oveq1 7142 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4910 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
11 fvmptiunrelexplb0d.n . . . . 5 (𝜑𝑁 ∈ V)
12 ovex 7168 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1312rgenw 3118 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
14 iunexg 7646 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1511, 13, 14sylancl 589 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
168, 10, 5, 15fvmptd3 6768 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1716eqcomd 2804 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
184, 7, 173sstr3d 3961 1 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cun 3879  wss 3881   ciun 4881  cmpt 5110   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  cfv 6324  (class class class)co 7135  0cc0 10526  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-n0 11886  df-relexp 14371
This theorem is referenced by:  fvmptiunrelexplb0da  40386  fvrcllb0d  40394  fvrtrcllb0d  40436
  Copyright terms: Public domain W3C validator