| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptiunrelexplb0d | Structured version Visualization version GIF version | ||
| Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| fvmptiunrelexplb0d.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
| fvmptiunrelexplb0d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| fvmptiunrelexplb0d.n | ⊢ (𝜑 → 𝑁 ∈ V) |
| fvmptiunrelexplb0d.0 | ⊢ (𝜑 → 0 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| fvmptiunrelexplb0d | ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptiunrelexplb0d.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑁) | |
| 2 | oveq2 7395 | . . . 4 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
| 3 | 2 | ssiun2s 5012 | . . 3 ⊢ (0 ∈ 𝑁 → (𝑅↑𝑟0) ⊆ ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝑅↑𝑟0) ⊆ ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
| 5 | fvmptiunrelexplb0d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 6 | relexp0g 14988 | . . 3 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 8 | fvmptiunrelexplb0d.c | . . . 4 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
| 9 | oveq1 7394 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 10 | 9 | iuneq2d 4986 | . . . 4 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
| 11 | fvmptiunrelexplb0d.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ V) | |
| 12 | ovex 7420 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 13 | 12 | rgenw 3048 | . . . . 5 ⊢ ∀𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V |
| 14 | iunexg 7942 | . . . . 5 ⊢ ((𝑁 ∈ V ∧ ∀𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) | |
| 15 | 11, 13, 14 | sylancl 586 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) |
| 16 | 8, 10, 5, 15 | fvmptd3 6991 | . . 3 ⊢ (𝜑 → (𝐶‘𝑅) = ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
| 17 | 16 | eqcomd 2735 | . 2 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) = (𝐶‘𝑅)) |
| 18 | 4, 7, 17 | 3sstr3d 4001 | 1 ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∪ ciun 4955 ↦ cmpt 5188 I cid 5532 dom cdm 5638 ran crn 5639 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ↑𝑟crelexp 14985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-n0 12443 df-relexp 14986 |
| This theorem is referenced by: fvmptiunrelexplb0da 43674 fvrcllb0d 43682 fvrtrcllb0d 43724 |
| Copyright terms: Public domain | W3C validator |