Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0d 41292
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0d.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0d (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0d
StepHypRef Expression
1 fvmptiunrelexplb0d.0 . . 3 (𝜑 → 0 ∈ 𝑁)
2 oveq2 7283 . . . 4 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
32ssiun2s 4978 . . 3 (0 ∈ 𝑁 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb0d.r . . 3 (𝜑𝑅 ∈ V)
6 relexp0g 14733 . . 3 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
75, 6syl 17 . 2 (𝜑 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8 fvmptiunrelexplb0d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
9 oveq1 7282 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4953 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
11 fvmptiunrelexplb0d.n . . . . 5 (𝜑𝑁 ∈ V)
12 ovex 7308 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1312rgenw 3076 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
14 iunexg 7806 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1511, 13, 14sylancl 586 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
168, 10, 5, 15fvmptd3 6898 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1716eqcomd 2744 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
184, 7, 173sstr3d 3967 1 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  wss 3887   ciun 4924  cmpt 5157   I cid 5488  dom cdm 5589  ran crn 5590  cres 5591  cfv 6433  (class class class)co 7275  0cc0 10871  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-n0 12234  df-relexp 14731
This theorem is referenced by:  fvmptiunrelexplb0da  41293  fvrcllb0d  41301  fvrtrcllb0d  41343
  Copyright terms: Public domain W3C validator