Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptiunrelexplb0d | Structured version Visualization version GIF version |
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
Ref | Expression |
---|---|
fvmptiunrelexplb0d.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
fvmptiunrelexplb0d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
fvmptiunrelexplb0d.n | ⊢ (𝜑 → 𝑁 ∈ V) |
fvmptiunrelexplb0d.0 | ⊢ (𝜑 → 0 ∈ 𝑁) |
Ref | Expression |
---|---|
fvmptiunrelexplb0d | ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptiunrelexplb0d.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑁) | |
2 | oveq2 7263 | . . . 4 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
3 | 2 | ssiun2s 4974 | . . 3 ⊢ (0 ∈ 𝑁 → (𝑅↑𝑟0) ⊆ ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝑅↑𝑟0) ⊆ ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
5 | fvmptiunrelexplb0d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
6 | relexp0g 14661 | . . 3 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | fvmptiunrelexplb0d.c | . . . 4 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
9 | oveq1 7262 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
10 | 9 | iuneq2d 4950 | . . . 4 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
11 | fvmptiunrelexplb0d.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ V) | |
12 | ovex 7288 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
13 | 12 | rgenw 3075 | . . . . 5 ⊢ ∀𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V |
14 | iunexg 7779 | . . . . 5 ⊢ ((𝑁 ∈ V ∧ ∀𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) | |
15 | 11, 13, 14 | sylancl 585 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) ∈ V) |
16 | 8, 10, 5, 15 | fvmptd3 6880 | . . 3 ⊢ (𝜑 → (𝐶‘𝑅) = ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛)) |
17 | 16 | eqcomd 2744 | . 2 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 (𝑅↑𝑟𝑛) = (𝐶‘𝑅)) |
18 | 4, 7, 17 | 3sstr3d 3963 | 1 ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∪ ciun 4921 ↦ cmpt 5153 I cid 5479 dom cdm 5580 ran crn 5581 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ↑𝑟crelexp 14658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-n0 12164 df-relexp 14659 |
This theorem is referenced by: fvmptiunrelexplb0da 41182 fvrcllb0d 41190 fvrtrcllb0d 41232 |
Copyright terms: Public domain | W3C validator |