Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0d 41181
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0d.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0d (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0d
StepHypRef Expression
1 fvmptiunrelexplb0d.0 . . 3 (𝜑 → 0 ∈ 𝑁)
2 oveq2 7263 . . . 4 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
32ssiun2s 4974 . . 3 (0 ∈ 𝑁 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb0d.r . . 3 (𝜑𝑅 ∈ V)
6 relexp0g 14661 . . 3 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
75, 6syl 17 . 2 (𝜑 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8 fvmptiunrelexplb0d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
9 oveq1 7262 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4950 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
11 fvmptiunrelexplb0d.n . . . . 5 (𝜑𝑁 ∈ V)
12 ovex 7288 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1312rgenw 3075 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
14 iunexg 7779 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1511, 13, 14sylancl 585 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
168, 10, 5, 15fvmptd3 6880 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1716eqcomd 2744 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
184, 7, 173sstr3d 3963 1 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  wss 3883   ciun 4921  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  cfv 6418  (class class class)co 7255  0cc0 10802  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-n0 12164  df-relexp 14659
This theorem is referenced by:  fvmptiunrelexplb0da  41182  fvrcllb0d  41190  fvrtrcllb0d  41232
  Copyright terms: Public domain W3C validator