MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Structured version   Visualization version   GIF version

Theorem dyadmaxlem 24201
Description: Lemma for dyadmax 24202. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmax.2 (𝜑𝐴 ∈ ℤ)
dyadmax.3 (𝜑𝐵 ∈ ℤ)
dyadmax.4 (𝜑𝐶 ∈ ℕ0)
dyadmax.5 (𝜑𝐷 ∈ ℕ0)
dyadmax.6 (𝜑 → ¬ 𝐷 < 𝐶)
dyadmax.7 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
Assertion
Ref Expression
dyadmaxlem (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 dyadmax.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 dyadmax.4 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 24196 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
62, 3, 5syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
76fveq2d 6649 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
8 df-ov 7138 . . . . . . . . . 10 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
97, 8eqtr4di 2851 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10 dyadmax.3 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
11 dyadmax.5 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
124dyadss 24198 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
132, 10, 3, 11, 12syl22anc 837 . . . . . . . . . . . . . . 15 (𝜑 → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
141, 13mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐷𝐶)
15 dyadmax.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐷 < 𝐶)
1611nn0red 11944 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
173nn0red 11944 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
1816, 17eqleltd 10773 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 = 𝐶 ↔ (𝐷𝐶 ∧ ¬ 𝐷 < 𝐶)))
1914, 15, 18mpbir2and 712 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐶)
2019oveq2d 7151 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐷) = (𝐵𝐹𝐶))
214dyadval 24196 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2210, 3, 21syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2320, 22eqtrd 2833 . . . . . . . . . . 11 (𝜑 → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2423fveq2d 6649 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩))
25 df-ov 7138 . . . . . . . . . 10 ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2624, 25eqtr4di 2851 . . . . . . . . 9 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
271, 9, 263sstr3d 3961 . . . . . . . 8 (𝜑 → ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) ⊆ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
282zred 12075 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 2nn 11698 . . . . . . . . . . . 12 2 ∈ ℕ
30 nnexpcl 13438 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3129, 3, 30sylancr 590 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℕ)
3228, 31nndivred 11679 . . . . . . . . . 10 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ)
3332rexrd 10680 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ*)
34 peano2re 10802 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3528, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℝ)
3635, 31nndivred 11679 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
3736rexrd 10680 . . . . . . . . 9 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
3828lep1d 11560 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 1))
3931nnred 11640 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℝ)
4031nngt0d 11674 . . . . . . . . . . 11 (𝜑 → 0 < (2↑𝐶))
41 lediv1 11494 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4228, 35, 39, 40, 41syl112anc 1371 . . . . . . . . . 10 (𝜑 → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4338, 42mpbid 235 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)))
44 ubicc2 12843 . . . . . . . . 9 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4533, 37, 43, 44syl3anc 1368 . . . . . . . 8 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4627, 45sseldd 3916 . . . . . . 7 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
4710zred 12075 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4847, 31nndivred 11679 . . . . . . . 8 (𝜑 → (𝐵 / (2↑𝐶)) ∈ ℝ)
49 peano2re 10802 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5047, 49syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + 1) ∈ ℝ)
5150, 31nndivred 11679 . . . . . . . 8 (𝜑 → ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ)
52 elicc2 12790 . . . . . . . 8 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5348, 51, 52syl2anc 587 . . . . . . 7 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5446, 53mpbid 235 . . . . . 6 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5554simp3d 1141 . . . . 5 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))
56 lediv1 11494 . . . . . 6 (((𝐴 + 1) ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5735, 50, 39, 40, 56syl112anc 1371 . . . . 5 (𝜑 → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5855, 57mpbird 260 . . . 4 (𝜑 → (𝐴 + 1) ≤ (𝐵 + 1))
59 1red 10631 . . . . 5 (𝜑 → 1 ∈ ℝ)
6028, 47, 59leadd1d 11223 . . . 4 (𝜑 → (𝐴𝐵 ↔ (𝐴 + 1) ≤ (𝐵 + 1)))
6158, 60mpbird 260 . . 3 (𝜑𝐴𝐵)
62 lbicc2 12842 . . . . . . . 8 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6333, 37, 43, 62syl3anc 1368 . . . . . . 7 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6427, 63sseldd 3916 . . . . . 6 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
65 elicc2 12790 . . . . . . 7 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6648, 51, 65syl2anc 587 . . . . . 6 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6764, 66mpbid 235 . . . . 5 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
6867simp2d 1140 . . . 4 (𝜑 → (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)))
69 lediv1 11494 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7047, 28, 39, 40, 69syl112anc 1371 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7168, 70mpbird 260 . . 3 (𝜑𝐵𝐴)
7228, 47letri3d 10771 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7361, 71, 72mpbir2and 712 . 2 (𝜑𝐴 = 𝐵)
7419eqcomd 2804 . 2 (𝜑𝐶 = 𝐷)
7573, 74jca 515 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  cmpo 7137  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  [,]cicc 12729  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068
This theorem is referenced by:  dyadmax  24202
  Copyright terms: Public domain W3C validator