MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Structured version   Visualization version   GIF version

Theorem dyadmaxlem 24759
Description: Lemma for dyadmax 24760. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmax.2 (𝜑𝐴 ∈ ℤ)
dyadmax.3 (𝜑𝐵 ∈ ℤ)
dyadmax.4 (𝜑𝐶 ∈ ℕ0)
dyadmax.5 (𝜑𝐷 ∈ ℕ0)
dyadmax.6 (𝜑 → ¬ 𝐷 < 𝐶)
dyadmax.7 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
Assertion
Ref Expression
dyadmaxlem (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 dyadmax.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 dyadmax.4 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 24754 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
62, 3, 5syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
76fveq2d 6775 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
8 df-ov 7274 . . . . . . . . . 10 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
97, 8eqtr4di 2798 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10 dyadmax.3 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
11 dyadmax.5 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
124dyadss 24756 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
132, 10, 3, 11, 12syl22anc 836 . . . . . . . . . . . . . . 15 (𝜑 → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
141, 13mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐷𝐶)
15 dyadmax.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐷 < 𝐶)
1611nn0red 12294 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
173nn0red 12294 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
1816, 17eqleltd 11119 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 = 𝐶 ↔ (𝐷𝐶 ∧ ¬ 𝐷 < 𝐶)))
1914, 15, 18mpbir2and 710 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐶)
2019oveq2d 7287 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐷) = (𝐵𝐹𝐶))
214dyadval 24754 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2210, 3, 21syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2320, 22eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2423fveq2d 6775 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩))
25 df-ov 7274 . . . . . . . . . 10 ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2624, 25eqtr4di 2798 . . . . . . . . 9 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
271, 9, 263sstr3d 3972 . . . . . . . 8 (𝜑 → ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) ⊆ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
282zred 12425 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 2nn 12046 . . . . . . . . . . . 12 2 ∈ ℕ
30 nnexpcl 13793 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3129, 3, 30sylancr 587 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℕ)
3228, 31nndivred 12027 . . . . . . . . . 10 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ)
3332rexrd 11026 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ*)
34 peano2re 11148 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3528, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℝ)
3635, 31nndivred 12027 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
3736rexrd 11026 . . . . . . . . 9 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
3828lep1d 11906 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 1))
3931nnred 11988 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℝ)
4031nngt0d 12022 . . . . . . . . . . 11 (𝜑 → 0 < (2↑𝐶))
41 lediv1 11840 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4228, 35, 39, 40, 41syl112anc 1373 . . . . . . . . . 10 (𝜑 → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4338, 42mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)))
44 ubicc2 13196 . . . . . . . . 9 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4533, 37, 43, 44syl3anc 1370 . . . . . . . 8 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4627, 45sseldd 3927 . . . . . . 7 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
4710zred 12425 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4847, 31nndivred 12027 . . . . . . . 8 (𝜑 → (𝐵 / (2↑𝐶)) ∈ ℝ)
49 peano2re 11148 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5047, 49syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + 1) ∈ ℝ)
5150, 31nndivred 12027 . . . . . . . 8 (𝜑 → ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ)
52 elicc2 13143 . . . . . . . 8 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5348, 51, 52syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5446, 53mpbid 231 . . . . . 6 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5554simp3d 1143 . . . . 5 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))
56 lediv1 11840 . . . . . 6 (((𝐴 + 1) ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5735, 50, 39, 40, 56syl112anc 1373 . . . . 5 (𝜑 → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5855, 57mpbird 256 . . . 4 (𝜑 → (𝐴 + 1) ≤ (𝐵 + 1))
59 1red 10977 . . . . 5 (𝜑 → 1 ∈ ℝ)
6028, 47, 59leadd1d 11569 . . . 4 (𝜑 → (𝐴𝐵 ↔ (𝐴 + 1) ≤ (𝐵 + 1)))
6158, 60mpbird 256 . . 3 (𝜑𝐴𝐵)
62 lbicc2 13195 . . . . . . . 8 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6333, 37, 43, 62syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6427, 63sseldd 3927 . . . . . 6 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
65 elicc2 13143 . . . . . . 7 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6648, 51, 65syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6764, 66mpbid 231 . . . . 5 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
6867simp2d 1142 . . . 4 (𝜑 → (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)))
69 lediv1 11840 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7047, 28, 39, 40, 69syl112anc 1373 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7168, 70mpbird 256 . . 3 (𝜑𝐵𝐴)
7228, 47letri3d 11117 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7361, 71, 72mpbir2and 710 . 2 (𝜑𝐴 = 𝐵)
7419eqcomd 2746 . 2 (𝜑𝐶 = 𝐷)
7573, 74jca 512 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892  cop 4573   class class class wbr 5079  cfv 6432  (class class class)co 7271  cmpo 7273  cr 10871  0cc0 10872  1c1 10873   + caddc 10875  *cxr 11009   < clt 11010  cle 11011   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  [,]cicc 13081  cexp 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-rest 17131  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cmp 22536  df-ovol 24626
This theorem is referenced by:  dyadmax  24760
  Copyright terms: Public domain W3C validator