MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Structured version   Visualization version   GIF version

Theorem dyadmaxlem 24666
Description: Lemma for dyadmax 24667. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmax.2 (𝜑𝐴 ∈ ℤ)
dyadmax.3 (𝜑𝐵 ∈ ℤ)
dyadmax.4 (𝜑𝐶 ∈ ℕ0)
dyadmax.5 (𝜑𝐷 ∈ ℕ0)
dyadmax.6 (𝜑 → ¬ 𝐷 < 𝐶)
dyadmax.7 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
Assertion
Ref Expression
dyadmaxlem (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 dyadmax.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 dyadmax.4 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 24661 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
62, 3, 5syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
76fveq2d 6760 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
8 df-ov 7258 . . . . . . . . . 10 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
97, 8eqtr4di 2797 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10 dyadmax.3 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
11 dyadmax.5 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
124dyadss 24663 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
132, 10, 3, 11, 12syl22anc 835 . . . . . . . . . . . . . . 15 (𝜑 → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
141, 13mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐷𝐶)
15 dyadmax.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐷 < 𝐶)
1611nn0red 12224 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
173nn0red 12224 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
1816, 17eqleltd 11049 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 = 𝐶 ↔ (𝐷𝐶 ∧ ¬ 𝐷 < 𝐶)))
1914, 15, 18mpbir2and 709 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐶)
2019oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐷) = (𝐵𝐹𝐶))
214dyadval 24661 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2210, 3, 21syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2320, 22eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2423fveq2d 6760 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩))
25 df-ov 7258 . . . . . . . . . 10 ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2624, 25eqtr4di 2797 . . . . . . . . 9 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
271, 9, 263sstr3d 3963 . . . . . . . 8 (𝜑 → ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) ⊆ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
282zred 12355 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 2nn 11976 . . . . . . . . . . . 12 2 ∈ ℕ
30 nnexpcl 13723 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3129, 3, 30sylancr 586 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℕ)
3228, 31nndivred 11957 . . . . . . . . . 10 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ)
3332rexrd 10956 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ*)
34 peano2re 11078 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3528, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℝ)
3635, 31nndivred 11957 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
3736rexrd 10956 . . . . . . . . 9 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
3828lep1d 11836 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 1))
3931nnred 11918 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℝ)
4031nngt0d 11952 . . . . . . . . . . 11 (𝜑 → 0 < (2↑𝐶))
41 lediv1 11770 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4228, 35, 39, 40, 41syl112anc 1372 . . . . . . . . . 10 (𝜑 → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4338, 42mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)))
44 ubicc2 13126 . . . . . . . . 9 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4533, 37, 43, 44syl3anc 1369 . . . . . . . 8 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4627, 45sseldd 3918 . . . . . . 7 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
4710zred 12355 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4847, 31nndivred 11957 . . . . . . . 8 (𝜑 → (𝐵 / (2↑𝐶)) ∈ ℝ)
49 peano2re 11078 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5047, 49syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + 1) ∈ ℝ)
5150, 31nndivred 11957 . . . . . . . 8 (𝜑 → ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ)
52 elicc2 13073 . . . . . . . 8 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5348, 51, 52syl2anc 583 . . . . . . 7 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5446, 53mpbid 231 . . . . . 6 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5554simp3d 1142 . . . . 5 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))
56 lediv1 11770 . . . . . 6 (((𝐴 + 1) ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5735, 50, 39, 40, 56syl112anc 1372 . . . . 5 (𝜑 → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5855, 57mpbird 256 . . . 4 (𝜑 → (𝐴 + 1) ≤ (𝐵 + 1))
59 1red 10907 . . . . 5 (𝜑 → 1 ∈ ℝ)
6028, 47, 59leadd1d 11499 . . . 4 (𝜑 → (𝐴𝐵 ↔ (𝐴 + 1) ≤ (𝐵 + 1)))
6158, 60mpbird 256 . . 3 (𝜑𝐴𝐵)
62 lbicc2 13125 . . . . . . . 8 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6333, 37, 43, 62syl3anc 1369 . . . . . . 7 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6427, 63sseldd 3918 . . . . . 6 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
65 elicc2 13073 . . . . . . 7 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6648, 51, 65syl2anc 583 . . . . . 6 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6764, 66mpbid 231 . . . . 5 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
6867simp2d 1141 . . . 4 (𝜑 → (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)))
69 lediv1 11770 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7047, 28, 39, 40, 69syl112anc 1372 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7168, 70mpbird 256 . . 3 (𝜑𝐵𝐴)
7228, 47letri3d 11047 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7361, 71, 72mpbir2and 709 . 2 (𝜑𝐴 = 𝐵)
7419eqcomd 2744 . 2 (𝜑𝐶 = 𝐷)
7573, 74jca 511 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  [,]cicc 13011  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533
This theorem is referenced by:  dyadmax  24667
  Copyright terms: Public domain W3C validator