MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Structured version   Visualization version   GIF version

Theorem dyadmaxlem 25121
Description: Lemma for dyadmax 25122. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmax.2 (𝜑𝐴 ∈ ℤ)
dyadmax.3 (𝜑𝐵 ∈ ℤ)
dyadmax.4 (𝜑𝐶 ∈ ℕ0)
dyadmax.5 (𝜑𝐷 ∈ ℕ0)
dyadmax.6 (𝜑 → ¬ 𝐷 < 𝐶)
dyadmax.7 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
Assertion
Ref Expression
dyadmaxlem (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 dyadmax.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 dyadmax.4 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 25116 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
62, 3, 5syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
76fveq2d 6895 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
8 df-ov 7414 . . . . . . . . . 10 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
97, 8eqtr4di 2790 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10 dyadmax.3 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
11 dyadmax.5 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
124dyadss 25118 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
132, 10, 3, 11, 12syl22anc 837 . . . . . . . . . . . . . . 15 (𝜑 → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
141, 13mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐷𝐶)
15 dyadmax.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐷 < 𝐶)
1611nn0red 12535 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
173nn0red 12535 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
1816, 17eqleltd 11360 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 = 𝐶 ↔ (𝐷𝐶 ∧ ¬ 𝐷 < 𝐶)))
1914, 15, 18mpbir2and 711 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐶)
2019oveq2d 7427 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐷) = (𝐵𝐹𝐶))
214dyadval 25116 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2210, 3, 21syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2320, 22eqtrd 2772 . . . . . . . . . . 11 (𝜑 → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2423fveq2d 6895 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩))
25 df-ov 7414 . . . . . . . . . 10 ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2624, 25eqtr4di 2790 . . . . . . . . 9 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
271, 9, 263sstr3d 4028 . . . . . . . 8 (𝜑 → ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) ⊆ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
282zred 12668 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 2nn 12287 . . . . . . . . . . . 12 2 ∈ ℕ
30 nnexpcl 14042 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3129, 3, 30sylancr 587 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℕ)
3228, 31nndivred 12268 . . . . . . . . . 10 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ)
3332rexrd 11266 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ*)
34 peano2re 11389 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3528, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℝ)
3635, 31nndivred 12268 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
3736rexrd 11266 . . . . . . . . 9 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
3828lep1d 12147 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 1))
3931nnred 12229 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℝ)
4031nngt0d 12263 . . . . . . . . . . 11 (𝜑 → 0 < (2↑𝐶))
41 lediv1 12081 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4228, 35, 39, 40, 41syl112anc 1374 . . . . . . . . . 10 (𝜑 → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4338, 42mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)))
44 ubicc2 13444 . . . . . . . . 9 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4533, 37, 43, 44syl3anc 1371 . . . . . . . 8 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4627, 45sseldd 3983 . . . . . . 7 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
4710zred 12668 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4847, 31nndivred 12268 . . . . . . . 8 (𝜑 → (𝐵 / (2↑𝐶)) ∈ ℝ)
49 peano2re 11389 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5047, 49syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + 1) ∈ ℝ)
5150, 31nndivred 12268 . . . . . . . 8 (𝜑 → ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ)
52 elicc2 13391 . . . . . . . 8 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5348, 51, 52syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5446, 53mpbid 231 . . . . . 6 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5554simp3d 1144 . . . . 5 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))
56 lediv1 12081 . . . . . 6 (((𝐴 + 1) ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5735, 50, 39, 40, 56syl112anc 1374 . . . . 5 (𝜑 → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5855, 57mpbird 256 . . . 4 (𝜑 → (𝐴 + 1) ≤ (𝐵 + 1))
59 1red 11217 . . . . 5 (𝜑 → 1 ∈ ℝ)
6028, 47, 59leadd1d 11810 . . . 4 (𝜑 → (𝐴𝐵 ↔ (𝐴 + 1) ≤ (𝐵 + 1)))
6158, 60mpbird 256 . . 3 (𝜑𝐴𝐵)
62 lbicc2 13443 . . . . . . . 8 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6333, 37, 43, 62syl3anc 1371 . . . . . . 7 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6427, 63sseldd 3983 . . . . . 6 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
65 elicc2 13391 . . . . . . 7 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6648, 51, 65syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6764, 66mpbid 231 . . . . 5 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
6867simp2d 1143 . . . 4 (𝜑 → (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)))
69 lediv1 12081 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7047, 28, 39, 40, 69syl112anc 1374 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7168, 70mpbird 256 . . 3 (𝜑𝐵𝐴)
7228, 47letri3d 11358 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7361, 71, 72mpbir2and 711 . 2 (𝜑𝐴 = 𝐵)
7419eqcomd 2738 . 2 (𝜑𝐶 = 𝐷)
7573, 74jca 512 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3948  cop 4634   class class class wbr 5148  cfv 6543  (class class class)co 7411  cmpo 7413  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  *cxr 11249   < clt 11250  cle 11251   / cdiv 11873  cn 12214  2c2 12269  0cn0 12474  cz 12560  [,]cicc 13329  cexp 14029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-rest 17370  df-topgen 17391  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-top 22403  df-topon 22420  df-bases 22456  df-cmp 22898  df-ovol 24988
This theorem is referenced by:  dyadmax  25122
  Copyright terms: Public domain W3C validator