MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Structured version   Visualization version   GIF version

Theorem dyadmaxlem 23763
Description: Lemma for dyadmax 23764. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmax.2 (𝜑𝐴 ∈ ℤ)
dyadmax.3 (𝜑𝐵 ∈ ℤ)
dyadmax.4 (𝜑𝐶 ∈ ℕ0)
dyadmax.5 (𝜑𝐷 ∈ ℕ0)
dyadmax.6 (𝜑 → ¬ 𝐷 < 𝐶)
dyadmax.7 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
Assertion
Ref Expression
dyadmaxlem (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 dyadmax.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 dyadmax.4 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 23758 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
62, 3, 5syl2anc 581 . . . . . . . . . . 11 (𝜑 → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
76fveq2d 6437 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
8 df-ov 6908 . . . . . . . . . 10 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
97, 8syl6eqr 2879 . . . . . . . . 9 (𝜑 → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10 dyadmax.3 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
11 dyadmax.5 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
124dyadss 23760 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
132, 10, 3, 11, 12syl22anc 874 . . . . . . . . . . . . . . 15 (𝜑 → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
141, 13mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐷𝐶)
15 dyadmax.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐷 < 𝐶)
1611nn0red 11679 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
173nn0red 11679 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
1816, 17eqleltd 10500 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 = 𝐶 ↔ (𝐷𝐶 ∧ ¬ 𝐷 < 𝐶)))
1914, 15, 18mpbir2and 706 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐶)
2019oveq2d 6921 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐷) = (𝐵𝐹𝐶))
214dyadval 23758 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2210, 3, 21syl2anc 581 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐹𝐶) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2320, 22eqtrd 2861 . . . . . . . . . . 11 (𝜑 → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2423fveq2d 6437 . . . . . . . . . 10 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩))
25 df-ov 6908 . . . . . . . . . 10 ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐵 / (2↑𝐶)), ((𝐵 + 1) / (2↑𝐶))⟩)
2624, 25syl6eqr 2879 . . . . . . . . 9 (𝜑 → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
271, 9, 263sstr3d 3872 . . . . . . . 8 (𝜑 → ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) ⊆ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
282zred 11810 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 2nn 11424 . . . . . . . . . . . 12 2 ∈ ℕ
30 nnexpcl 13167 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3129, 3, 30sylancr 583 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℕ)
3228, 31nndivred 11405 . . . . . . . . . 10 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ)
3332rexrd 10406 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ℝ*)
34 peano2re 10528 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3528, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℝ)
3635, 31nndivred 11405 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
3736rexrd 10406 . . . . . . . . 9 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
3828lep1d 11285 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 1))
3931nnred 11367 . . . . . . . . . . 11 (𝜑 → (2↑𝐶) ∈ ℝ)
4031nngt0d 11400 . . . . . . . . . . 11 (𝜑 → 0 < (2↑𝐶))
41 lediv1 11218 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4228, 35, 39, 40, 41syl112anc 1499 . . . . . . . . . 10 (𝜑 → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))))
4338, 42mpbid 224 . . . . . . . . 9 (𝜑 → (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)))
44 ubicc2 12579 . . . . . . . . 9 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4533, 37, 43, 44syl3anc 1496 . . . . . . . 8 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
4627, 45sseldd 3828 . . . . . . 7 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
4710zred 11810 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4847, 31nndivred 11405 . . . . . . . 8 (𝜑 → (𝐵 / (2↑𝐶)) ∈ ℝ)
49 peano2re 10528 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5047, 49syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + 1) ∈ ℝ)
5150, 31nndivred 11405 . . . . . . . 8 (𝜑 → ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ)
52 elicc2 12526 . . . . . . . 8 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5348, 51, 52syl2anc 581 . . . . . . 7 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
5446, 53mpbid 224 . . . . . 6 (𝜑 → (((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5554simp3d 1180 . . . . 5 (𝜑 → ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))
56 lediv1 11218 . . . . . 6 (((𝐴 + 1) ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5735, 50, 39, 40, 56syl112anc 1499 . . . . 5 (𝜑 → ((𝐴 + 1) ≤ (𝐵 + 1) ↔ ((𝐴 + 1) / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
5855, 57mpbird 249 . . . 4 (𝜑 → (𝐴 + 1) ≤ (𝐵 + 1))
59 1red 10357 . . . . 5 (𝜑 → 1 ∈ ℝ)
6028, 47, 59leadd1d 10946 . . . 4 (𝜑 → (𝐴𝐵 ↔ (𝐴 + 1) ≤ (𝐵 + 1)))
6158, 60mpbird 249 . . 3 (𝜑𝐴𝐵)
62 lbicc2 12578 . . . . . . . 8 (((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ* ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐴 + 1) / (2↑𝐶))) → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6333, 37, 43, 62syl3anc 1496 . . . . . . 7 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
6427, 63sseldd 3828 . . . . . 6 (𝜑 → (𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))))
65 elicc2 12526 . . . . . . 7 (((𝐵 / (2↑𝐶)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐶)) ∈ ℝ) → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6648, 51, 65syl2anc 581 . . . . . 6 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ((𝐵 / (2↑𝐶))[,]((𝐵 + 1) / (2↑𝐶))) ↔ ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶)))))
6764, 66mpbid 224 . . . . 5 (𝜑 → ((𝐴 / (2↑𝐶)) ∈ ℝ ∧ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)) ∧ (𝐴 / (2↑𝐶)) ≤ ((𝐵 + 1) / (2↑𝐶))))
6867simp2d 1179 . . . 4 (𝜑 → (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶)))
69 lediv1 11218 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7047, 28, 39, 40, 69syl112anc 1499 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐵 / (2↑𝐶)) ≤ (𝐴 / (2↑𝐶))))
7168, 70mpbird 249 . . 3 (𝜑𝐵𝐴)
7228, 47letri3d 10498 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7361, 71, 72mpbir2and 706 . 2 (𝜑𝐴 = 𝐵)
7419eqcomd 2831 . 2 (𝜑𝐶 = 𝐷)
7573, 74jca 509 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wss 3798  cop 4403   class class class wbr 4873  cfv 6123  (class class class)co 6905  cmpt2 6907  cr 10251  0cc0 10252  1c1 10253   + caddc 10255  *cxr 10390   < clt 10391  cle 10392   / cdiv 11009  cn 11350  2c2 11406  0cn0 11618  cz 11704  [,]cicc 12466  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-rest 16436  df-topgen 16457  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-top 21069  df-topon 21086  df-bases 21121  df-cmp 21561  df-ovol 23630
This theorem is referenced by:  dyadmax  23764
  Copyright terms: Public domain W3C validator