Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2p | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39850. When 𝐵 is zero, 𝑋 and 𝑌 must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2o.b | ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
lclkrlem2o.n | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
lclkrlem2p.bn | ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) |
Ref | Expression |
---|---|
lclkrlem2p | ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2o.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | lclkrlem2o.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | lclkrlem2o.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | 2, 3, 1 | dvhlmod 39427 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
6 | lclkrlem2m.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
7 | eqid 2737 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | lclkrlem2n.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
9 | 6, 7, 8 | lspsncl 20345 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
10 | 4, 5, 9 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
11 | 6, 7 | lssss 20304 | . . . 4 ⊢ ((𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) → (𝑁‘{𝑌}) ⊆ 𝑉) |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉) |
13 | lclkrlem2o.b | . . . . . . . 8 ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) | |
14 | lclkrlem2p.bn | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) | |
15 | 13, 14 | eqtr3id 2791 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) |
16 | lclkrlem2m.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
17 | lclkrlem2m.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑈) | |
18 | 17 | lmodring 20237 | . . . . . . . . . . 11 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
19 | 4, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ Ring) |
20 | lclkrlem2m.f | . . . . . . . . . . . 12 ⊢ 𝐹 = (LFnl‘𝑈) | |
21 | lclkrlem2m.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (LDual‘𝑈) | |
22 | lclkrlem2m.p | . . . . . . . . . . . 12 ⊢ + = (+g‘𝐷) | |
23 | lclkrlem2m.e | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
24 | lclkrlem2m.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
25 | 20, 21, 22, 4, 23, 24 | ldualvaddcl 37446 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
26 | eqid 2737 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
27 | 17, 26, 6, 20 | lflcl 37380 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) |
28 | 4, 25, 16, 27 | syl3anc 1371 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) |
29 | 2, 3, 1 | dvhlvec 39426 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ LVec) |
30 | 17 | lvecdrng 20473 | . . . . . . . . . . . 12 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
31 | 29, 30 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
32 | 17, 26, 6, 20 | lflcl 37380 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ 𝑌 ∈ 𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆)) |
33 | 4, 25, 5, 32 | syl3anc 1371 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆)) |
34 | lclkrlem2o.n | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) | |
35 | lclkrlem2m.z | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝑆) | |
36 | lclkrlem2m.i | . . . . . . . . . . . 12 ⊢ 𝐼 = (invr‘𝑆) | |
37 | 26, 35, 36 | drnginvrcl 20113 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) |
38 | 31, 33, 34, 37 | syl3anc 1371 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) |
39 | lclkrlem2m.q | . . . . . . . . . . 11 ⊢ × = (.r‘𝑆) | |
40 | 26, 39 | ringcl 19895 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆)) |
41 | 19, 28, 38, 40 | syl3anc 1371 | . . . . . . . . 9 ⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆)) |
42 | lclkrlem2m.t | . . . . . . . . . 10 ⊢ · = ( ·𝑠 ‘𝑈) | |
43 | 6, 17, 42, 26 | lmodvscl 20246 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) |
44 | 4, 41, 5, 43 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) |
45 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
46 | lclkrlem2m.m | . . . . . . . . 9 ⊢ − = (-g‘𝑈) | |
47 | 6, 45, 46 | lmodsubeq0 20288 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → ((𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈) ↔ 𝑋 = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) |
48 | 4, 16, 44, 47 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈) ↔ 𝑋 = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) |
49 | 15, 48 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
50 | 49 | sneqd 4590 | . . . . 5 ⊢ (𝜑 → {𝑋} = {((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)}) |
51 | 50 | fveq2d 6834 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)})) |
52 | 17, 26, 6, 42, 8 | lspsnvsi 20372 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)}) ⊆ (𝑁‘{𝑌})) |
53 | 4, 41, 5, 52 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑁‘{((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)}) ⊆ (𝑁‘{𝑌})) |
54 | 51, 53 | eqsstrd 3974 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) |
55 | lclkrlem2o.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
56 | 2, 3, 6, 55 | dochss 39682 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑌}) ⊆ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → ( ⊥ ‘(𝑁‘{𝑌})) ⊆ ( ⊥ ‘(𝑁‘{𝑋}))) |
57 | 1, 12, 54, 56 | syl3anc 1371 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑌})) ⊆ ( ⊥ ‘(𝑁‘{𝑋}))) |
58 | 5 | snssd 4761 | . . 3 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
59 | 2, 3, 55, 6, 8, 1, 58 | dochocsp 39696 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑌})) = ( ⊥ ‘{𝑌})) |
60 | 16 | snssd 4761 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
61 | 2, 3, 55, 6, 8, 1, 60 | dochocsp 39696 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋})) = ( ⊥ ‘{𝑋})) |
62 | 57, 59, 61 | 3sstr3d 3982 | 1 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ⊆ wss 3902 {csn 4578 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 +gcplusg 17060 .rcmulr 17061 Scalarcsca 17063 ·𝑠 cvsca 17064 0gc0g 17248 -gcsg 18676 LSSumclsm 19336 Ringcrg 19878 invrcinvr 20008 DivRingcdr 20093 LModclmod 20229 LSubSpclss 20299 LSpanclspn 20339 LVecclvec 20470 LFnlclfn 37373 LKerclk 37401 LDualcld 37439 HLchlt 37666 LHypclh 38301 DVecHcdvh 39395 ocHcoch 39664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-riotaBAD 37269 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-tpos 8117 df-undef 8164 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lvec 20471 df-lsatoms 37292 df-lfl 37374 df-ldual 37440 df-oposet 37492 df-ol 37494 df-oml 37495 df-covers 37582 df-ats 37583 df-atl 37614 df-cvlat 37638 df-hlat 37667 df-llines 37815 df-lplanes 37816 df-lvols 37817 df-lines 37818 df-psubsp 37820 df-pmap 37821 df-padd 38113 df-lhyp 38305 df-laut 38306 df-ldil 38421 df-ltrn 38422 df-trl 38476 df-tendo 39072 df-edring 39074 df-disoa 39346 df-dvech 39396 df-dib 39456 df-dic 39490 df-dih 39546 df-doch 39665 |
This theorem is referenced by: lclkrlem2r 39841 |
Copyright terms: Public domain | W3C validator |