Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaabsb Structured version   Visualization version   GIF version

Theorem oaabsb 43333
Description: The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
oaabsb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))

Proof of Theorem oaabsb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9536 . . . . 5 ω ∈ On
2 omcl 8451 . . . . 5 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ·o ω) ∈ On)
31, 2mpan2 691 . . . 4 (𝐴 ∈ On → (𝐴 ·o ω) ∈ On)
4 oawordex 8472 . . . 4 (((𝐴 ·o ω) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
53, 4sylan 580 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
6 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
76adantr 480 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
83ad2antrr 726 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 ·o ω) ∈ On)
9 simpr 484 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
10 oaass 8476 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐴 ·o ω) ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
117, 8, 9, 10syl3anc 1373 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
12 1on 8397 . . . . . . . . . 10 1o ∈ On
13 odi 8494 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 1o ∈ On ∧ ω ∈ On) → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
1412, 1, 13mp3an23 1455 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
15 1oaomeqom 43332 . . . . . . . . . . 11 (1o +o ω) = ω
1615oveq2i 7357 . . . . . . . . . 10 (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω)
1716a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω))
18 om1 8457 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
1918oveq1d 7361 . . . . . . . . 9 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o ω)) = (𝐴 +o (𝐴 ·o ω)))
2014, 17, 193eqtr3rd 2775 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o (𝐴 ·o ω)) = (𝐴 ·o ω))
2120oveq1d 7361 . . . . . . 7 (𝐴 ∈ On → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2221ad2antrr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2311, 22eqtr3d 2768 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥))
24 oveq2 7354 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = (𝐴 +o 𝐵))
25 id 22 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 ·o ω) +o 𝑥) = 𝐵)
2624, 25eqeq12d 2747 . . . . 5 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2723, 26syl5ibcom 245 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2827rexlimdva 3133 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
295, 28sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 → (𝐴 +o 𝐵) = 𝐵))
30 limom 7812 . . . . . 6 Lim ω
31 omlim 8448 . . . . . 6 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
321, 30, 31mpanr12 705 . . . . 5 (𝐴 ∈ On → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
3332ad2antrr 726 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
34 oveq2 7354 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
3534sseq1d 3966 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o ∅) ⊆ 𝐵))
36 oveq2 7354 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
3736sseq1d 3966 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o 𝑦) ⊆ 𝐵))
38 oveq2 7354 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
3938sseq1d 3966 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o suc 𝑦) ⊆ 𝐵))
40 om0 8432 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
41 0ss 4350 . . . . . . . . . 10 ∅ ⊆ 𝐵
4240, 41eqsstrdi 3979 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ 𝐵)
4342ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ∅) ⊆ 𝐵)
44 nnon 7802 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → 𝑦 ∈ On)
45 omcl 8451 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
466, 44, 45syl2an 596 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ On)
47 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4847adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐵 ∈ On)
496adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5046, 48, 493jca 1128 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
5150expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5251adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5352imp 406 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
54 oaword 8464 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5655biimpa 476 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵))
57 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5812a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 1o ∈ On)
5944adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
60 odi 8494 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
6157, 58, 59, 60syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
62 1onn 8555 . . . . . . . . . . . . . . . . . . . 20 1o ∈ ω
63 nnacom 8532 . . . . . . . . . . . . . . . . . . . 20 ((1o ∈ ω ∧ 𝑦 ∈ ω) → (1o +o 𝑦) = (𝑦 +o 1o))
6462, 63mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (1o +o 𝑦) = (𝑦 +o 1o))
65 oa1suc 8446 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
6644, 65syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝑦 +o 1o) = suc 𝑦)
6764, 66eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω → (1o +o 𝑦) = suc 𝑦)
6867oveq2d 7362 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
7018oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7170adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7261, 69, 713eqtr3rd 2775 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7372expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → (𝐴 ∈ On → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7473adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7574adantrd 491 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7675imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7776adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
78 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o 𝐵) = 𝐵)
7978adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o 𝐵) = 𝐵)
8079adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
8156, 77, 803sstr3d 3989 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 ·o suc 𝑦) ⊆ 𝐵)
8281exp31 419 . . . . . . . 8 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ⊆ 𝐵 → (𝐴 ·o suc 𝑦) ⊆ 𝐵)))
8335, 37, 39, 43, 82finds2 7828 . . . . . . 7 (𝑥 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o 𝑥) ⊆ 𝐵))
8483com12 32 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝑥 ∈ ω → (𝐴 ·o 𝑥) ⊆ 𝐵))
8584ralrimiv 3123 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
86 iunss 4994 . . . . 5 ( 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8785, 86sylibr 234 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8833, 87eqsstrd 3969 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) ⊆ 𝐵)
8988ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = 𝐵 → (𝐴 ·o ω) ⊆ 𝐵))
9029, 89impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902  c0 4283   ciun 4941  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346  ωcom 7796  1oc1o 8378   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator