Step | Hyp | Ref
| Expression |
1 | | omelon 9715 |
. . . . 5
⊢ ω
∈ On |
2 | | omcl 8592 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ ω ∈
On) → (𝐴
·o ω) ∈ On) |
3 | 1, 2 | mpan2 690 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 ·o ω)
∈ On) |
4 | | oawordex 8613 |
. . . 4
⊢ (((𝐴 ·o ω)
∈ On ∧ 𝐵 ∈
On) → ((𝐴
·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o
𝑥) = 𝐵)) |
5 | 3, 4 | sylan 579 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω)
⊆ 𝐵 ↔
∃𝑥 ∈ On ((𝐴 ·o ω)
+o 𝑥) = 𝐵)) |
6 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
8 | 3 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 ·o ω)
∈ On) |
9 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝑥 ∈ On) |
10 | | oaass 8617 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐴 ·o ω)
∈ On ∧ 𝑥 ∈
On) → ((𝐴
+o (𝐴
·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o
𝑥))) |
11 | 7, 8, 9, 10 | syl3anc 1371 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω))
+o 𝑥) = (𝐴 +o ((𝐴 ·o ω)
+o 𝑥))) |
12 | | 1on 8534 |
. . . . . . . . . 10
⊢
1o ∈ On |
13 | | odi 8635 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 1o
∈ On ∧ ω ∈ On) → (𝐴 ·o (1o
+o ω)) = ((𝐴 ·o 1o)
+o (𝐴
·o ω))) |
14 | 12, 1, 13 | mp3an23 1453 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝐴 ·o
(1o +o ω)) = ((𝐴 ·o 1o)
+o (𝐴
·o ω))) |
15 | | 1oaomeqom 43255 |
. . . . . . . . . . 11
⊢
(1o +o ω) = ω |
16 | 15 | oveq2i 7459 |
. . . . . . . . . 10
⊢ (𝐴 ·o
(1o +o ω)) = (𝐴 ·o
ω) |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝐴 ·o
(1o +o ω)) = (𝐴 ·o
ω)) |
18 | | om1 8598 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → (𝐴 ·o
1o) = 𝐴) |
19 | 18 | oveq1d 7463 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → ((𝐴 ·o
1o) +o (𝐴 ·o ω)) = (𝐴 +o (𝐴 ·o
ω))) |
20 | 14, 17, 19 | 3eqtr3rd 2789 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (𝐴 +o (𝐴 ·o ω))
= (𝐴 ·o
ω)) |
21 | 20 | oveq1d 7463 |
. . . . . . 7
⊢ (𝐴 ∈ On → ((𝐴 +o (𝐴 ·o ω))
+o 𝑥) = ((𝐴 ·o ω)
+o 𝑥)) |
22 | 21 | ad2antrr 725 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω))
+o 𝑥) = ((𝐴 ·o ω)
+o 𝑥)) |
23 | 11, 22 | eqtr3d 2782 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +o ((𝐴 ·o ω)
+o 𝑥)) = ((𝐴 ·o ω)
+o 𝑥)) |
24 | | oveq2 7456 |
. . . . . 6
⊢ (((𝐴 ·o ω)
+o 𝑥) = 𝐵 → (𝐴 +o ((𝐴 ·o ω) +o
𝑥)) = (𝐴 +o 𝐵)) |
25 | | id 22 |
. . . . . 6
⊢ (((𝐴 ·o ω)
+o 𝑥) = 𝐵 → ((𝐴 ·o ω) +o
𝑥) = 𝐵) |
26 | 24, 25 | eqeq12d 2756 |
. . . . 5
⊢ (((𝐴 ·o ω)
+o 𝑥) = 𝐵 → ((𝐴 +o ((𝐴 ·o ω) +o
𝑥)) = ((𝐴 ·o ω) +o
𝑥) ↔ (𝐴 +o 𝐵) = 𝐵)) |
27 | 23, 26 | syl5ibcom 245 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (((𝐴 ·o ω)
+o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵)) |
28 | 27 | rexlimdva 3161 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On ((𝐴 ·o ω) +o
𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵)) |
29 | 5, 28 | sylbid 240 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω)
⊆ 𝐵 → (𝐴 +o 𝐵) = 𝐵)) |
30 | | limom 7919 |
. . . . . 6
⊢ Lim
ω |
31 | | omlim 8589 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (ω ∈
On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
32 | 1, 30, 31 | mpanr12 704 |
. . . . 5
⊢ (𝐴 ∈ On → (𝐴 ·o ω) =
∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
33 | 32 | ad2antrr 725 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
34 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o
∅)) |
35 | 34 | sseq1d 4040 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o ∅) ⊆ 𝐵)) |
36 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) |
37 | 36 | sseq1d 4040 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o 𝑦) ⊆ 𝐵)) |
38 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) |
39 | 38 | sseq1d 4040 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o suc 𝑦) ⊆ 𝐵)) |
40 | | om0 8573 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → (𝐴 ·o ∅) =
∅) |
41 | | 0ss 4423 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐵 |
42 | 40, 41 | eqsstrdi 4063 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝐴 ·o ∅)
⊆ 𝐵) |
43 | 42 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ∅) ⊆ 𝐵) |
44 | | nnon 7909 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → 𝑦 ∈ On) |
45 | | omcl 8592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On) |
46 | 6, 44, 45 | syl2an 595 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ On) |
47 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐵 ∈ On) |
49 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐴 ∈ On) |
50 | 46, 48, 49 | 3jca 1128 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
51 | 50 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))) |
52 | 51 | adantrd 491 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))) |
53 | 52 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)) |
54 | | oaword 8605 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵))) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵))) |
56 | 55 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)) |
57 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝐴 ∈ On) |
58 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) →
1o ∈ On) |
59 | 44 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On) |
60 | | odi 8635 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 1o
∈ On ∧ 𝑦 ∈
On) → (𝐴
·o (1o +o 𝑦)) = ((𝐴 ·o 1o)
+o (𝐴
·o 𝑦))) |
61 | 57, 58, 59, 60 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o
(1o +o 𝑦)) = ((𝐴 ·o 1o)
+o (𝐴
·o 𝑦))) |
62 | | 1onn 8696 |
. . . . . . . . . . . . . . . . . . . 20
⊢
1o ∈ ω |
63 | | nnacom 8673 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1o ∈ ω ∧ 𝑦 ∈ ω) → (1o
+o 𝑦) = (𝑦 +o
1o)) |
64 | 62, 63 | mpan 689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω →
(1o +o 𝑦) = (𝑦 +o
1o)) |
65 | | oa1suc 8587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ On → (𝑦 +o 1o) =
suc 𝑦) |
66 | 44, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω → (𝑦 +o 1o) =
suc 𝑦) |
67 | 64, 66 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω →
(1o +o 𝑦) = suc 𝑦) |
68 | 67 | oveq2d 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → (𝐴 ·o
(1o +o 𝑦)) = (𝐴 ·o suc 𝑦)) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o
(1o +o 𝑦)) = (𝐴 ·o suc 𝑦)) |
70 | 18 | oveq1d 7463 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → ((𝐴 ·o
1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦))) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → ((𝐴 ·o
1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦))) |
72 | 61, 69, 71 | 3eqtr3rd 2789 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)) |
73 | 72 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ω → (𝐴 ∈ On → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))) |
74 | 73 | adantrd 491 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))) |
75 | 74 | adantrd 491 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))) |
76 | 75 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)) |
77 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)) |
78 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o 𝐵) = 𝐵) |
79 | 78 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o 𝐵) = 𝐵) |
80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵) |
81 | 56, 77, 80 | 3sstr3d 4055 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 ·o suc 𝑦) ⊆ 𝐵) |
82 | 81 | exp31 419 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ⊆ 𝐵 → (𝐴 ·o suc 𝑦) ⊆ 𝐵))) |
83 | 35, 37, 39, 43, 82 | finds2 7938 |
. . . . . . 7
⊢ (𝑥 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o 𝑥) ⊆ 𝐵)) |
84 | 83 | com12 32 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝑥 ∈ ω → (𝐴 ·o 𝑥) ⊆ 𝐵)) |
85 | 84 | ralrimiv 3151 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵) |
86 | | iunss 5068 |
. . . . 5
⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵) |
87 | 85, 86 | sylibr 234 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ∪
𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵) |
88 | 33, 87 | eqsstrd 4047 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) ⊆ 𝐵) |
89 | 88 | ex 412 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = 𝐵 → (𝐴 ·o ω) ⊆ 𝐵)) |
90 | 29, 89 | impbid 212 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω)
⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵)) |