Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaabsb Structured version   Visualization version   GIF version

Theorem oaabsb 43250
Description: The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
oaabsb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))

Proof of Theorem oaabsb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9653 . . . . 5 ω ∈ On
2 omcl 8543 . . . . 5 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ·o ω) ∈ On)
31, 2mpan2 691 . . . 4 (𝐴 ∈ On → (𝐴 ·o ω) ∈ On)
4 oawordex 8564 . . . 4 (((𝐴 ·o ω) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
53, 4sylan 580 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
6 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
76adantr 480 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
83ad2antrr 726 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 ·o ω) ∈ On)
9 simpr 484 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
10 oaass 8568 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐴 ·o ω) ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
117, 8, 9, 10syl3anc 1372 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
12 1on 8487 . . . . . . . . . 10 1o ∈ On
13 odi 8586 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 1o ∈ On ∧ ω ∈ On) → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
1412, 1, 13mp3an23 1454 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
15 1oaomeqom 43249 . . . . . . . . . . 11 (1o +o ω) = ω
1615oveq2i 7411 . . . . . . . . . 10 (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω)
1716a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω))
18 om1 8549 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
1918oveq1d 7415 . . . . . . . . 9 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o ω)) = (𝐴 +o (𝐴 ·o ω)))
2014, 17, 193eqtr3rd 2778 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o (𝐴 ·o ω)) = (𝐴 ·o ω))
2120oveq1d 7415 . . . . . . 7 (𝐴 ∈ On → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2221ad2antrr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2311, 22eqtr3d 2771 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥))
24 oveq2 7408 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = (𝐴 +o 𝐵))
25 id 22 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 ·o ω) +o 𝑥) = 𝐵)
2624, 25eqeq12d 2750 . . . . 5 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2723, 26syl5ibcom 245 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2827rexlimdva 3139 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
295, 28sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 → (𝐴 +o 𝐵) = 𝐵))
30 limom 7872 . . . . . 6 Lim ω
31 omlim 8540 . . . . . 6 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
321, 30, 31mpanr12 705 . . . . 5 (𝐴 ∈ On → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
3332ad2antrr 726 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
34 oveq2 7408 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
3534sseq1d 3988 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o ∅) ⊆ 𝐵))
36 oveq2 7408 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
3736sseq1d 3988 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o 𝑦) ⊆ 𝐵))
38 oveq2 7408 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
3938sseq1d 3988 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o suc 𝑦) ⊆ 𝐵))
40 om0 8524 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
41 0ss 4373 . . . . . . . . . 10 ∅ ⊆ 𝐵
4240, 41eqsstrdi 4001 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ 𝐵)
4342ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ∅) ⊆ 𝐵)
44 nnon 7862 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → 𝑦 ∈ On)
45 omcl 8543 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
466, 44, 45syl2an 596 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ On)
47 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4847adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐵 ∈ On)
496adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5046, 48, 493jca 1128 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
5150expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5251adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5352imp 406 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
54 oaword 8556 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5655biimpa 476 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵))
57 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5812a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 1o ∈ On)
5944adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
60 odi 8586 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
6157, 58, 59, 60syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
62 1onn 8647 . . . . . . . . . . . . . . . . . . . 20 1o ∈ ω
63 nnacom 8624 . . . . . . . . . . . . . . . . . . . 20 ((1o ∈ ω ∧ 𝑦 ∈ ω) → (1o +o 𝑦) = (𝑦 +o 1o))
6462, 63mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (1o +o 𝑦) = (𝑦 +o 1o))
65 oa1suc 8538 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
6644, 65syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝑦 +o 1o) = suc 𝑦)
6764, 66eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω → (1o +o 𝑦) = suc 𝑦)
6867oveq2d 7416 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
7018oveq1d 7415 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7170adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7261, 69, 713eqtr3rd 2778 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7372expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → (𝐴 ∈ On → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7473adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7574adantrd 491 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7675imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7776adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
78 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o 𝐵) = 𝐵)
7978adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o 𝐵) = 𝐵)
8079adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
8156, 77, 803sstr3d 4011 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 ·o suc 𝑦) ⊆ 𝐵)
8281exp31 419 . . . . . . . 8 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ⊆ 𝐵 → (𝐴 ·o suc 𝑦) ⊆ 𝐵)))
8335, 37, 39, 43, 82finds2 7889 . . . . . . 7 (𝑥 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o 𝑥) ⊆ 𝐵))
8483com12 32 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝑥 ∈ ω → (𝐴 ·o 𝑥) ⊆ 𝐵))
8584ralrimiv 3129 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
86 iunss 5019 . . . . 5 ( 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8785, 86sylibr 234 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8833, 87eqsstrd 3991 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) ⊆ 𝐵)
8988ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = 𝐵 → (𝐴 ·o ω) ⊆ 𝐵))
9029, 89impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3924  c0 4306   ciun 4965  Oncon0 6350  Lim wlim 6351  suc csuc 6352  (class class class)co 7400  ωcom 7856  1oc1o 8468   +o coa 8472   ·o comu 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724  ax-inf2 9648
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-omul 8480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator