Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaabsb Structured version   Visualization version   GIF version

Theorem oaabsb 43256
Description: The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
oaabsb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))

Proof of Theorem oaabsb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9715 . . . . 5 ω ∈ On
2 omcl 8592 . . . . 5 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ·o ω) ∈ On)
31, 2mpan2 690 . . . 4 (𝐴 ∈ On → (𝐴 ·o ω) ∈ On)
4 oawordex 8613 . . . 4 (((𝐴 ·o ω) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
53, 4sylan 579 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ ∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵))
6 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
76adantr 480 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
83ad2antrr 725 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 ·o ω) ∈ On)
9 simpr 484 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
10 oaass 8617 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐴 ·o ω) ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
117, 8, 9, 10syl3anc 1371 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = (𝐴 +o ((𝐴 ·o ω) +o 𝑥)))
12 1on 8534 . . . . . . . . . 10 1o ∈ On
13 odi 8635 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 1o ∈ On ∧ ω ∈ On) → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
1412, 1, 13mp3an23 1453 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = ((𝐴 ·o 1o) +o (𝐴 ·o ω)))
15 1oaomeqom 43255 . . . . . . . . . . 11 (1o +o ω) = ω
1615oveq2i 7459 . . . . . . . . . 10 (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω)
1716a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o (1o +o ω)) = (𝐴 ·o ω))
18 om1 8598 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
1918oveq1d 7463 . . . . . . . . 9 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o ω)) = (𝐴 +o (𝐴 ·o ω)))
2014, 17, 193eqtr3rd 2789 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o (𝐴 ·o ω)) = (𝐴 ·o ω))
2120oveq1d 7463 . . . . . . 7 (𝐴 ∈ On → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2221ad2antrr 725 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → ((𝐴 +o (𝐴 ·o ω)) +o 𝑥) = ((𝐴 ·o ω) +o 𝑥))
2311, 22eqtr3d 2782 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥))
24 oveq2 7456 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = (𝐴 +o 𝐵))
25 id 22 . . . . . 6 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 ·o ω) +o 𝑥) = 𝐵)
2624, 25eqeq12d 2756 . . . . 5 (((𝐴 ·o ω) +o 𝑥) = 𝐵 → ((𝐴 +o ((𝐴 ·o ω) +o 𝑥)) = ((𝐴 ·o ω) +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2723, 26syl5ibcom 245 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ On) → (((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2827rexlimdva 3161 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On ((𝐴 ·o ω) +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
295, 28sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 → (𝐴 +o 𝐵) = 𝐵))
30 limom 7919 . . . . . 6 Lim ω
31 omlim 8589 . . . . . 6 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
321, 30, 31mpanr12 704 . . . . 5 (𝐴 ∈ On → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
3332ad2antrr 725 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
34 oveq2 7456 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
3534sseq1d 4040 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o ∅) ⊆ 𝐵))
36 oveq2 7456 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
3736sseq1d 4040 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o 𝑦) ⊆ 𝐵))
38 oveq2 7456 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
3938sseq1d 4040 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ (𝐴 ·o suc 𝑦) ⊆ 𝐵))
40 om0 8573 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
41 0ss 4423 . . . . . . . . . 10 ∅ ⊆ 𝐵
4240, 41eqsstrdi 4063 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ 𝐵)
4342ad2antrr 725 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ∅) ⊆ 𝐵)
44 nnon 7909 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → 𝑦 ∈ On)
45 omcl 8592 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
466, 44, 45syl2an 595 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ On)
47 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4847adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐵 ∈ On)
496adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5046, 48, 493jca 1128 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
5150expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5251adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On)))
5352imp 406 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On))
54 oaword 8605 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → ((𝐴 ·o 𝑦) ⊆ 𝐵 ↔ (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵)))
5655biimpa 476 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) ⊆ (𝐴 +o 𝐵))
57 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝐴 ∈ On)
5812a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 1o ∈ On)
5944adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
60 odi 8635 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
6157, 58, 59, 60syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)))
62 1onn 8696 . . . . . . . . . . . . . . . . . . . 20 1o ∈ ω
63 nnacom 8673 . . . . . . . . . . . . . . . . . . . 20 ((1o ∈ ω ∧ 𝑦 ∈ ω) → (1o +o 𝑦) = (𝑦 +o 1o))
6462, 63mpan 689 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (1o +o 𝑦) = (𝑦 +o 1o))
65 oa1suc 8587 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
6644, 65syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝑦 +o 1o) = suc 𝑦)
6764, 66eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω → (1o +o 𝑦) = suc 𝑦)
6867oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o (1o +o 𝑦)) = (𝐴 ·o suc 𝑦))
7018oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7170adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → ((𝐴 ·o 1o) +o (𝐴 ·o 𝑦)) = (𝐴 +o (𝐴 ·o 𝑦)))
7261, 69, 713eqtr3rd 2789 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7372expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → (𝐴 ∈ On → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7473adantrd 491 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7574adantrd 491 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦)))
7675imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
7776adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o (𝐴 ·o 𝑦)) = (𝐴 ·o suc 𝑦))
78 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 +o 𝐵) = 𝐵)
7978adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) → (𝐴 +o 𝐵) = 𝐵)
8079adantr 480 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
8156, 77, 803sstr3d 4055 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵)) ∧ (𝐴 ·o 𝑦) ⊆ 𝐵) → (𝐴 ·o suc 𝑦) ⊆ 𝐵)
8281exp31 419 . . . . . . . 8 (𝑦 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ((𝐴 ·o 𝑦) ⊆ 𝐵 → (𝐴 ·o suc 𝑦) ⊆ 𝐵)))
8335, 37, 39, 43, 82finds2 7938 . . . . . . 7 (𝑥 ∈ ω → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o 𝑥) ⊆ 𝐵))
8483com12 32 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝑥 ∈ ω → (𝐴 ·o 𝑥) ⊆ 𝐵))
8584ralrimiv 3151 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
86 iunss 5068 . . . . 5 ( 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8785, 86sylibr 234 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ 𝐵)
8833, 87eqsstrd 4047 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 +o 𝐵) = 𝐵) → (𝐴 ·o ω) ⊆ 𝐵)
8988ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = 𝐵 → (𝐴 ·o ω) ⊆ 𝐵))
9029, 89impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  c0 4352   ciun 5015  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448  ωcom 7903  1oc1o 8515   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator