Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
2 | | eqid 2737 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | | eqid 2737 |
. . 3
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
4 | | dprdss.1 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd 𝑇) |
5 | | dprdgrp 19392 |
. . . 4
⊢ (𝐺dom DProd 𝑇 → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | | dprdss.2 |
. . . 4
⊢ (𝜑 → dom 𝑇 = 𝐼) |
8 | 4, 7 | dprddomcld 19388 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
9 | | dprdss.3 |
. . 3
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
10 | | dprdss.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) |
11 | 10 | ralrimiva 3105 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) |
12 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝑆‘𝑘) = (𝑆‘𝑥)) |
13 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝑇‘𝑘) = (𝑇‘𝑥)) |
14 | 12, 13 | sseq12d 3934 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝑆‘𝑘) ⊆ (𝑇‘𝑘) ↔ (𝑆‘𝑥) ⊆ (𝑇‘𝑥))) |
15 | 14 | rspcv 3532 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 → (∀𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘) → (𝑆‘𝑥) ⊆ (𝑇‘𝑥))) |
16 | 11, 15 | mpan9 510 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ (𝑇‘𝑥)) |
17 | 16 | 3ad2antr1 1190 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑇‘𝑥)) |
18 | 4 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → 𝐺dom DProd 𝑇) |
19 | 7 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → dom 𝑇 = 𝐼) |
20 | | simpr1 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐼) |
21 | | simpr2 1197 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐼) |
22 | | simpr3 1198 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
23 | 18, 19, 20, 21, 22, 1 | dprdcntz 19395 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑇‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇‘𝑦))) |
24 | 4, 7 | dprdf2 19394 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇:𝐼⟶(SubGrp‘𝐺)) |
25 | 24 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺)) |
26 | 25, 21 | ffvelrnd 6905 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑇‘𝑦) ∈ (SubGrp‘𝐺)) |
27 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
28 | 27 | subgss 18544 |
. . . . . . 7
⊢ ((𝑇‘𝑦) ∈ (SubGrp‘𝐺) → (𝑇‘𝑦) ⊆ (Base‘𝐺)) |
29 | 26, 28 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑇‘𝑦) ⊆ (Base‘𝐺)) |
30 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → (𝑆‘𝑘) = (𝑆‘𝑦)) |
31 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → (𝑇‘𝑘) = (𝑇‘𝑦)) |
32 | 30, 31 | sseq12d 3934 |
. . . . . . 7
⊢ (𝑘 = 𝑦 → ((𝑆‘𝑘) ⊆ (𝑇‘𝑘) ↔ (𝑆‘𝑦) ⊆ (𝑇‘𝑦))) |
33 | 11 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → ∀𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) |
34 | 32, 33, 21 | rspcdva 3539 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑦) ⊆ (𝑇‘𝑦)) |
35 | 27, 1 | cntz2ss 18727 |
. . . . . 6
⊢ (((𝑇‘𝑦) ⊆ (Base‘𝐺) ∧ (𝑆‘𝑦) ⊆ (𝑇‘𝑦)) → ((Cntz‘𝐺)‘(𝑇‘𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦))) |
36 | 29, 34, 35 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → ((Cntz‘𝐺)‘(𝑇‘𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦))) |
37 | 23, 36 | sstrd 3911 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑇‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦))) |
38 | 17, 37 | sstrd 3911 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦))) |
39 | 6 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
40 | 27 | subgacs 18577 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
41 | | acsmre 17155 |
. . . . . . 7
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
42 | 39, 40, 41 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
43 | | difss 4046 |
. . . . . . . . 9
⊢ (𝐼 ∖ {𝑥}) ⊆ 𝐼 |
44 | 11 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∀𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) |
45 | | ssralv 3967 |
. . . . . . . . 9
⊢ ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) ⊆ (𝑇‘𝑘))) |
46 | 43, 44, 45 | mpsyl 68 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) ⊆ (𝑇‘𝑘)) |
47 | | ss2iun 4922 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑘) ⊆ (𝑇‘𝑘) → ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) ⊆ ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇‘𝑘)) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) ⊆ ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇‘𝑘)) |
49 | 9 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
50 | | ffun 6548 |
. . . . . . . 8
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆) |
51 | | funiunfv 7061 |
. . . . . . . 8
⊢ (Fun
𝑆 → ∪ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) = ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑘) = ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
53 | 24 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺)) |
54 | | ffun 6548 |
. . . . . . . 8
⊢ (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇) |
55 | | funiunfv 7061 |
. . . . . . . 8
⊢ (Fun
𝑇 → ∪ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇‘𝑘) = ∪ (𝑇 “ (𝐼 ∖ {𝑥}))) |
56 | 53, 54, 55 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪
𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇‘𝑘) = ∪ (𝑇 “ (𝐼 ∖ {𝑥}))) |
57 | 48, 52, 56 | 3sstr3d 3947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ∪
(𝑇 “ (𝐼 ∖ {𝑥}))) |
58 | | imassrn 5940 |
. . . . . . . 8
⊢ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇 |
59 | 53 | frnd 6553 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺)) |
60 | | mresspw 17095 |
. . . . . . . . . 10
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
61 | 42, 60 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
62 | 59, 61 | sstrd 3911 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺)) |
63 | 58, 62 | sstrid 3912 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺)) |
64 | | sspwuni 5008 |
. . . . . . 7
⊢ ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑇
“ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
65 | 63, 64 | sylib 221 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
66 | 42, 3, 57, 65 | mrcssd 17127 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑇 “ (𝐼 ∖ {𝑥})))) |
67 | | ss2in 4151 |
. . . . 5
⊢ (((𝑆‘𝑥) ⊆ (𝑇‘𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑇
“ (𝐼 ∖ {𝑥}))))) |
68 | 16, 66, 67 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑇
“ (𝐼 ∖ {𝑥}))))) |
69 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd 𝑇) |
70 | 7 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → dom 𝑇 = 𝐼) |
71 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
72 | 69, 70, 71, 2, 3 | dprddisj 19396 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑇‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑇
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)}) |
73 | 68, 72 | sseqtrd 3941 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) ⊆
{(0g‘𝐺)}) |
74 | 1, 2, 3, 6, 8, 9, 38, 73 | dmdprdd 19386 |
. 2
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
75 | 4 | a1d 25 |
. . . . 5
⊢ (𝜑 → (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑇)) |
76 | | ss2ixp 8591 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐼 (𝑆‘𝑘) ⊆ (𝑇‘𝑘) → X𝑘 ∈ 𝐼 (𝑆‘𝑘) ⊆ X𝑘 ∈ 𝐼 (𝑇‘𝑘)) |
77 | 11, 76 | syl 17 |
. . . . . 6
⊢ (𝜑 → X𝑘 ∈
𝐼 (𝑆‘𝑘) ⊆ X𝑘 ∈ 𝐼 (𝑇‘𝑘)) |
78 | | rabss2 3991 |
. . . . . 6
⊢ (X𝑘 ∈
𝐼 (𝑆‘𝑘) ⊆ X𝑘 ∈ 𝐼 (𝑇‘𝑘) → {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} ⊆ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}) |
79 | | ssrexv 3968 |
. . . . . 6
⊢ ({ℎ ∈ X𝑘 ∈
𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} ⊆ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} → (∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓))) |
80 | 77, 78, 79 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓))) |
81 | 75, 80 | anim12d 612 |
. . . 4
⊢ (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)))) |
82 | | fdm 6554 |
. . . . 5
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼) |
83 | | eqid 2737 |
. . . . . 6
⊢ {ℎ ∈ X𝑘 ∈
𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} |
84 | 2, 83 | eldprd 19391 |
. . . . 5
⊢ (dom
𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)))) |
85 | 9, 82, 84 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑆‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)))) |
86 | | eqid 2737 |
. . . . . 6
⊢ {ℎ ∈ X𝑘 ∈
𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)} |
87 | 2, 86 | eldprd 19391 |
. . . . 5
⊢ (dom
𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)))) |
88 | 7, 87 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑘 ∈ 𝐼 (𝑇‘𝑘) ∣ ℎ finSupp (0g‘𝐺)}𝑎 = (𝐺 Σg 𝑓)))) |
89 | 81, 85, 88 | 3imtr4d 297 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇))) |
90 | 89 | ssrdv 3907 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)) |
91 | 74, 90 | jca 515 |
1
⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))) |