MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   GIF version

Theorem dprdss 19547
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1 (𝜑𝐺dom DProd 𝑇)
dprdss.2 (𝜑 → dom 𝑇 = 𝐼)
dprdss.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdss.4 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
Assertion
Ref Expression
dprdss (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Distinct variable groups:   𝑘,𝐺   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝐼

Proof of Theorem dprdss
Dummy variables 𝑓 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2738 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2738 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdss.1 . . . 4 (𝜑𝐺dom DProd 𝑇)
5 dprdgrp 19523 . . . 4 (𝐺dom DProd 𝑇𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdss.2 . . . 4 (𝜑 → dom 𝑇 = 𝐼)
84, 7dprddomcld 19519 . . 3 (𝜑𝐼 ∈ V)
9 dprdss.3 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
10 dprdss.4 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
1110ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
12 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑥 → (𝑆𝑘) = (𝑆𝑥))
13 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
1412, 13sseq12d 3950 . . . . . . 7 (𝑘 = 𝑥 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑥) ⊆ (𝑇𝑥)))
1514rspcv 3547 . . . . . 6 (𝑥𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑥) ⊆ (𝑇𝑥)))
1611, 15mpan9 506 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ (𝑇𝑥))
17163ad2antr1 1186 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑇𝑥))
184adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝐺dom DProd 𝑇)
197adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → dom 𝑇 = 𝐼)
20 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝐼)
21 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑦𝐼)
22 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝑦)
2318, 19, 20, 21, 22, 1dprdcntz 19526 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇𝑦)))
244, 7dprdf2 19525 . . . . . . . . 9 (𝜑𝑇:𝐼⟶(SubGrp‘𝐺))
2524adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺))
2625, 21ffvelrnd 6944 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ∈ (SubGrp‘𝐺))
27 eqid 2738 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2827subgss 18671 . . . . . . 7 ((𝑇𝑦) ∈ (SubGrp‘𝐺) → (𝑇𝑦) ⊆ (Base‘𝐺))
2926, 28syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ⊆ (Base‘𝐺))
30 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑦 → (𝑆𝑘) = (𝑆𝑦))
31 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
3230, 31sseq12d 3950 . . . . . . 7 (𝑘 = 𝑦 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑦) ⊆ (𝑇𝑦)))
3311adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
3432, 33, 21rspcdva 3554 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑦) ⊆ (𝑇𝑦))
3527, 1cntz2ss 18854 . . . . . 6 (((𝑇𝑦) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝑇𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3629, 34, 35syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3723, 36sstrd 3927 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3817, 37sstrd 3927 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
396adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
4027subgacs 18704 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
41 acsmre 17278 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4239, 40, 413syl 18 . . . . . 6 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
43 difss 4062 . . . . . . . . 9 (𝐼 ∖ {𝑥}) ⊆ 𝐼
4411adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
45 ssralv 3983 . . . . . . . . 9 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘)))
4643, 44, 45mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘))
47 ss2iun 4939 . . . . . . . 8 (∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
4846, 47syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
499adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
50 ffun 6587 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
51 funiunfv 7103 . . . . . . . 8 (Fun 𝑆 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5249, 50, 513syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5324adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺))
54 ffun 6587 . . . . . . . 8 (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇)
55 funiunfv 7103 . . . . . . . 8 (Fun 𝑇 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5653, 54, 553syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5748, 52, 563sstr3d 3963 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (𝑇 “ (𝐼 ∖ {𝑥})))
58 imassrn 5969 . . . . . . . 8 (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇
5953frnd 6592 . . . . . . . . 9 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺))
60 mresspw 17218 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6142, 60syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6259, 61sstrd 3927 . . . . . . . 8 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺))
6358, 62sstrid 3928 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
64 sspwuni 5025 . . . . . . 7 ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6563, 64sylib 217 . . . . . 6 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6642, 3, 57, 65mrcssd 17250 . . . . 5 ((𝜑𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥}))))
67 ss2in 4167 . . . . 5 (((𝑆𝑥) ⊆ (𝑇𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
6816, 66, 67syl2anc 583 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
694adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐺dom DProd 𝑇)
707adantr 480 . . . . 5 ((𝜑𝑥𝐼) → dom 𝑇 = 𝐼)
71 simpr 484 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
7269, 70, 71, 2, 3dprddisj 19527 . . . 4 ((𝜑𝑥𝐼) → ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
7368, 72sseqtrd 3957 . . 3 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ {(0g𝐺)})
741, 2, 3, 6, 8, 9, 38, 73dmdprdd 19517 . 2 (𝜑𝐺dom DProd 𝑆)
754a1d 25 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆𝐺dom DProd 𝑇))
76 ss2ixp 8656 . . . . . . 7 (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
7711, 76syl 17 . . . . . 6 (𝜑X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
78 rabss2 4007 . . . . . 6 (X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘) → {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)})
79 ssrexv 3984 . . . . . 6 ({X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8077, 78, 793syl 18 . . . . 5 (𝜑 → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8175, 80anim12d 608 . . . 4 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
82 fdm 6593 . . . . 5 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
83 eqid 2738 . . . . . 6 {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}
842, 83eldprd 19522 . . . . 5 (dom 𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
859, 82, 843syl 18 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
86 eqid 2738 . . . . . 6 {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}
872, 86eldprd 19522 . . . . 5 (dom 𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
887, 87syl 17 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
8981, 85, 883imtr4d 293 . . 3 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇)))
9089ssrdv 3923 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))
9174, 90jca 511 1 (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Xcixp 8643   finSupp cfsupp 9058  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-subg 18667  df-cntz 18838  df-dprd 19513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator