MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   GIF version

Theorem dprdss 20017
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1 (𝜑𝐺dom DProd 𝑇)
dprdss.2 (𝜑 → dom 𝑇 = 𝐼)
dprdss.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdss.4 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
Assertion
Ref Expression
dprdss (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Distinct variable groups:   𝑘,𝐺   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝐼

Proof of Theorem dprdss
Dummy variables 𝑓 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2736 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdss.1 . . . 4 (𝜑𝐺dom DProd 𝑇)
5 dprdgrp 19993 . . . 4 (𝐺dom DProd 𝑇𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdss.2 . . . 4 (𝜑 → dom 𝑇 = 𝐼)
84, 7dprddomcld 19989 . . 3 (𝜑𝐼 ∈ V)
9 dprdss.3 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
10 dprdss.4 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
1110ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
12 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑥 → (𝑆𝑘) = (𝑆𝑥))
13 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
1412, 13sseq12d 3997 . . . . . . 7 (𝑘 = 𝑥 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑥) ⊆ (𝑇𝑥)))
1514rspcv 3602 . . . . . 6 (𝑥𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑥) ⊆ (𝑇𝑥)))
1611, 15mpan9 506 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ (𝑇𝑥))
17163ad2antr1 1189 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑇𝑥))
184adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝐺dom DProd 𝑇)
197adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → dom 𝑇 = 𝐼)
20 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝐼)
21 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑦𝐼)
22 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝑦)
2318, 19, 20, 21, 22, 1dprdcntz 19996 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇𝑦)))
244, 7dprdf2 19995 . . . . . . . . 9 (𝜑𝑇:𝐼⟶(SubGrp‘𝐺))
2524adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺))
2625, 21ffvelcdmd 7080 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ∈ (SubGrp‘𝐺))
27 eqid 2736 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2827subgss 19115 . . . . . . 7 ((𝑇𝑦) ∈ (SubGrp‘𝐺) → (𝑇𝑦) ⊆ (Base‘𝐺))
2926, 28syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ⊆ (Base‘𝐺))
30 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑦 → (𝑆𝑘) = (𝑆𝑦))
31 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
3230, 31sseq12d 3997 . . . . . . 7 (𝑘 = 𝑦 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑦) ⊆ (𝑇𝑦)))
3311adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
3432, 33, 21rspcdva 3607 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑦) ⊆ (𝑇𝑦))
3527, 1cntz2ss 19323 . . . . . 6 (((𝑇𝑦) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝑇𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3629, 34, 35syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3723, 36sstrd 3974 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3817, 37sstrd 3974 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
396adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
4027subgacs 19149 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
41 acsmre 17669 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4239, 40, 413syl 18 . . . . . 6 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
43 difss 4116 . . . . . . . . 9 (𝐼 ∖ {𝑥}) ⊆ 𝐼
4411adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
45 ssralv 4032 . . . . . . . . 9 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘)))
4643, 44, 45mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘))
47 ss2iun 4991 . . . . . . . 8 (∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
4846, 47syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
499adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
50 ffun 6714 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
51 funiunfv 7245 . . . . . . . 8 (Fun 𝑆 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5249, 50, 513syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5324adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺))
54 ffun 6714 . . . . . . . 8 (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇)
55 funiunfv 7245 . . . . . . . 8 (Fun 𝑇 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5653, 54, 553syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5748, 52, 563sstr3d 4018 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (𝑇 “ (𝐼 ∖ {𝑥})))
58 imassrn 6063 . . . . . . . 8 (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇
5953frnd 6719 . . . . . . . . 9 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺))
60 mresspw 17609 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6142, 60syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6259, 61sstrd 3974 . . . . . . . 8 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺))
6358, 62sstrid 3975 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
64 sspwuni 5081 . . . . . . 7 ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6563, 64sylib 218 . . . . . 6 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6642, 3, 57, 65mrcssd 17641 . . . . 5 ((𝜑𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥}))))
67 ss2in 4225 . . . . 5 (((𝑆𝑥) ⊆ (𝑇𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
6816, 66, 67syl2anc 584 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
694adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐺dom DProd 𝑇)
707adantr 480 . . . . 5 ((𝜑𝑥𝐼) → dom 𝑇 = 𝐼)
71 simpr 484 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
7269, 70, 71, 2, 3dprddisj 19997 . . . 4 ((𝜑𝑥𝐼) → ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
7368, 72sseqtrd 4000 . . 3 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ {(0g𝐺)})
741, 2, 3, 6, 8, 9, 38, 73dmdprdd 19987 . 2 (𝜑𝐺dom DProd 𝑆)
754a1d 25 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆𝐺dom DProd 𝑇))
76 ss2ixp 8929 . . . . . . 7 (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
7711, 76syl 17 . . . . . 6 (𝜑X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
78 rabss2 4058 . . . . . 6 (X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘) → {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)})
79 ssrexv 4033 . . . . . 6 ({X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8077, 78, 793syl 18 . . . . 5 (𝜑 → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8175, 80anim12d 609 . . . 4 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
82 fdm 6720 . . . . 5 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
83 eqid 2736 . . . . . 6 {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}
842, 83eldprd 19992 . . . . 5 (dom 𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
859, 82, 843syl 18 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
86 eqid 2736 . . . . . 6 {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}
872, 86eldprd 19992 . . . . 5 (dom 𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
887, 87syl 17 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
8981, 85, 883imtr4d 294 . . 3 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇)))
9089ssrdv 3969 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))
9174, 90jca 511 1 (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  cin 3930  wss 3931  𝒫 cpw 4580  {csn 4606   cuni 4888   ciun 4972   class class class wbr 5124  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  Xcixp 8916   finSupp cfsupp 9378  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  Moorecmre 17599  mrClscmrc 17600  ACScacs 17602  Grpcgrp 18921  SubGrpcsubg 19108  Cntzccntz 19303   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-subg 19111  df-cntz 19305  df-dprd 19983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator