MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   GIF version

Theorem dprdss 19936
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1 (𝜑𝐺dom DProd 𝑇)
dprdss.2 (𝜑 → dom 𝑇 = 𝐼)
dprdss.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdss.4 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
Assertion
Ref Expression
dprdss (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Distinct variable groups:   𝑘,𝐺   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝐼

Proof of Theorem dprdss
Dummy variables 𝑓 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2730 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2730 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdss.1 . . . 4 (𝜑𝐺dom DProd 𝑇)
5 dprdgrp 19912 . . . 4 (𝐺dom DProd 𝑇𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdss.2 . . . 4 (𝜑 → dom 𝑇 = 𝐼)
84, 7dprddomcld 19908 . . 3 (𝜑𝐼 ∈ V)
9 dprdss.3 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
10 dprdss.4 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
1110ralrimiva 3122 . . . . . 6 (𝜑 → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
12 fveq2 6817 . . . . . . . 8 (𝑘 = 𝑥 → (𝑆𝑘) = (𝑆𝑥))
13 fveq2 6817 . . . . . . . 8 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
1412, 13sseq12d 3966 . . . . . . 7 (𝑘 = 𝑥 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑥) ⊆ (𝑇𝑥)))
1514rspcv 3571 . . . . . 6 (𝑥𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑥) ⊆ (𝑇𝑥)))
1611, 15mpan9 506 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ (𝑇𝑥))
17163ad2antr1 1189 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑇𝑥))
184adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝐺dom DProd 𝑇)
197adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → dom 𝑇 = 𝐼)
20 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝐼)
21 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑦𝐼)
22 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝑦)
2318, 19, 20, 21, 22, 1dprdcntz 19915 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇𝑦)))
244, 7dprdf2 19914 . . . . . . . . 9 (𝜑𝑇:𝐼⟶(SubGrp‘𝐺))
2524adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺))
2625, 21ffvelcdmd 7013 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ∈ (SubGrp‘𝐺))
27 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2827subgss 19032 . . . . . . 7 ((𝑇𝑦) ∈ (SubGrp‘𝐺) → (𝑇𝑦) ⊆ (Base‘𝐺))
2926, 28syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ⊆ (Base‘𝐺))
30 fveq2 6817 . . . . . . . 8 (𝑘 = 𝑦 → (𝑆𝑘) = (𝑆𝑦))
31 fveq2 6817 . . . . . . . 8 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
3230, 31sseq12d 3966 . . . . . . 7 (𝑘 = 𝑦 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑦) ⊆ (𝑇𝑦)))
3311adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
3432, 33, 21rspcdva 3576 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑦) ⊆ (𝑇𝑦))
3527, 1cntz2ss 19240 . . . . . 6 (((𝑇𝑦) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝑇𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3629, 34, 35syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3723, 36sstrd 3943 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3817, 37sstrd 3943 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
396adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
4027subgacs 19066 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
41 acsmre 17550 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4239, 40, 413syl 18 . . . . . 6 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
43 difss 4084 . . . . . . . . 9 (𝐼 ∖ {𝑥}) ⊆ 𝐼
4411adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
45 ssralv 4001 . . . . . . . . 9 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘)))
4643, 44, 45mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘))
47 ss2iun 4958 . . . . . . . 8 (∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
4846, 47syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
499adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
50 ffun 6650 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
51 funiunfv 7177 . . . . . . . 8 (Fun 𝑆 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5249, 50, 513syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5324adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺))
54 ffun 6650 . . . . . . . 8 (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇)
55 funiunfv 7177 . . . . . . . 8 (Fun 𝑇 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5653, 54, 553syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5748, 52, 563sstr3d 3987 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (𝑇 “ (𝐼 ∖ {𝑥})))
58 imassrn 6017 . . . . . . . 8 (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇
5953frnd 6655 . . . . . . . . 9 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺))
60 mresspw 17486 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6142, 60syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6259, 61sstrd 3943 . . . . . . . 8 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺))
6358, 62sstrid 3944 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
64 sspwuni 5046 . . . . . . 7 ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6563, 64sylib 218 . . . . . 6 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6642, 3, 57, 65mrcssd 17522 . . . . 5 ((𝜑𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥}))))
67 ss2in 4193 . . . . 5 (((𝑆𝑥) ⊆ (𝑇𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
6816, 66, 67syl2anc 584 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
694adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐺dom DProd 𝑇)
707adantr 480 . . . . 5 ((𝜑𝑥𝐼) → dom 𝑇 = 𝐼)
71 simpr 484 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
7269, 70, 71, 2, 3dprddisj 19916 . . . 4 ((𝜑𝑥𝐼) → ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
7368, 72sseqtrd 3969 . . 3 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ {(0g𝐺)})
741, 2, 3, 6, 8, 9, 38, 73dmdprdd 19906 . 2 (𝜑𝐺dom DProd 𝑆)
754a1d 25 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆𝐺dom DProd 𝑇))
76 ss2ixp 8829 . . . . . . 7 (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
7711, 76syl 17 . . . . . 6 (𝜑X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
78 rabss2 4026 . . . . . 6 (X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘) → {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)})
79 ssrexv 4002 . . . . . 6 ({X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8077, 78, 793syl 18 . . . . 5 (𝜑 → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8175, 80anim12d 609 . . . 4 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
82 fdm 6656 . . . . 5 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
83 eqid 2730 . . . . . 6 {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}
842, 83eldprd 19911 . . . . 5 (dom 𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
859, 82, 843syl 18 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
86 eqid 2730 . . . . . 6 {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}
872, 86eldprd 19911 . . . . 5 (dom 𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
887, 87syl 17 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
8981, 85, 883imtr4d 294 . . 3 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇)))
9089ssrdv 3938 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))
9174, 90jca 511 1 (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  𝒫 cpw 4548  {csn 4574   cuni 4857   ciun 4939   class class class wbr 5089  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6471  wf 6473  cfv 6477  (class class class)co 7341  Xcixp 8816   finSupp cfsupp 9240  Basecbs 17112  0gc0g 17335   Σg cgsu 17336  Moorecmre 17476  mrClscmrc 17477  ACScacs 17479  Grpcgrp 18838  SubGrpcsubg 19025  Cntzccntz 19220   DProd cdprd 19900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-subg 19028  df-cntz 19222  df-dprd 19902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator