MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip2 Structured version   Visualization version   GIF version

Theorem dvlip2 25972
Description: Combine the results of dvlip 25970 and dvlipcn 25971 into one. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvlip2.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvlip2.j 𝐽 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
dvlip2.x (𝜑𝑋𝑆)
dvlip2.f (𝜑𝐹:𝑋⟶ℂ)
dvlip2.a (𝜑𝐴𝑆)
dvlip2.r (𝜑𝑅 ∈ ℝ*)
dvlip2.b 𝐵 = (𝐴(ball‘𝐽)𝑅)
dvlip2.d (𝜑𝐵 ⊆ dom (𝑆 D 𝐹))
dvlip2.m (𝜑𝑀 ∈ ℝ)
dvlip2.l ((𝜑𝑥𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑌   𝑥,𝑍
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem dvlip2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvlip2.j . . . . . . . 8 𝐽 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
2 cnxmet 24733 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 dvlip2.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4 recnprss 25877 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
53, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6 xmetres2 24311 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
72, 5, 6sylancr 585 . . . . . . . 8 (𝜑 → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
81, 7eqeltrid 2829 . . . . . . 7 (𝜑𝐽 ∈ (∞Met‘𝑆))
98ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐽 ∈ (∞Met‘𝑆))
10 dvlip2.a . . . . . . 7 (𝜑𝐴𝑆)
1110ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐴𝑆)
12 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍𝐵)
13 dvlip2.b . . . . . . . . 9 𝐵 = (𝐴(ball‘𝐽)𝑅)
1412, 13eleqtrdi 2835 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍 ∈ (𝐴(ball‘𝐽)𝑅))
15 dvlip2.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ*)
1615ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑅 ∈ ℝ*)
17 elbl 24338 . . . . . . . . 9 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝑍 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅)))
189, 11, 16, 17syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅)))
1914, 18mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅))
2019simpld 493 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍𝑆)
21 xmetcl 24281 . . . . . 6 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑍𝑆) → (𝐴𝐽𝑍) ∈ ℝ*)
229, 11, 20, 21syl3anc 1368 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) ∈ ℝ*)
23 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌𝐵)
2423, 13eleqtrdi 2835 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌 ∈ (𝐴(ball‘𝐽)𝑅))
25 elbl 24338 . . . . . . . . 9 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝑌 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅)))
269, 11, 16, 25syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅)))
2724, 26mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅))
2827simpld 493 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌𝑆)
29 xmetcl 24281 . . . . . 6 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑌𝑆) → (𝐴𝐽𝑌) ∈ ℝ*)
309, 11, 28, 29syl3anc 1368 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) ∈ ℝ*)
3122, 30ifcld 4576 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) ∈ ℝ*)
3219simprd 494 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) < 𝑅)
3327simprd 494 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) < 𝑅)
34 breq1 5152 . . . . . 6 ((𝐴𝐽𝑍) = if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) → ((𝐴𝐽𝑍) < 𝑅 ↔ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅))
35 breq1 5152 . . . . . 6 ((𝐴𝐽𝑌) = if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) → ((𝐴𝐽𝑌) < 𝑅 ↔ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅))
3634, 35ifboth 4569 . . . . 5 (((𝐴𝐽𝑍) < 𝑅 ∧ (𝐴𝐽𝑌) < 𝑅) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅)
3732, 33, 36syl2anc 582 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅)
38 qbtwnxr 13214 . . . 4 ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) ∈ ℝ*𝑅 ∈ ℝ* ∧ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅) → ∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅))
3931, 16, 37, 38syl3anc 1368 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅))
40 qre 12970 . . . . 5 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
41 rexr 11292 . . . . . . . 8 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
42 xrmaxlt 13195 . . . . . . . 8 (((𝐴𝐽𝑌) ∈ ℝ* ∧ (𝐴𝐽𝑍) ∈ ℝ*𝑟 ∈ ℝ*) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 ↔ ((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟)))
4330, 22, 41, 42syl2an3an 1419 . . . . . . 7 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 ↔ ((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟)))
44 ioossicc 13445 . . . . . . . . . . . . 13 ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ ((𝐴𝑟)[,](𝐴 + 𝑟))
45 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑆 = ℝ)
4628, 45eleqtrd 2827 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌 ∈ ℝ)
4746ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ℝ)
48 xmetsym 24297 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑌𝑆) → (𝐴𝐽𝑌) = (𝑌𝐽𝐴))
499, 11, 28, 48syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) = (𝑌𝐽𝐴))
5045sqxpeqd 5710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
5150reseq2d 5985 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
521, 51eqtrid 2777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐽 = ((abs ∘ − ) ↾ (ℝ × ℝ)))
5352oveqd 7436 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌𝐽𝐴) = (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
5411, 45eleqtrd 2827 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐴 ∈ ℝ)
55 eqid 2725 . . . . . . . . . . . . . . . . . . . . 21 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
5655remetdval 24749 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑌𝐴)))
5746, 54, 56syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑌𝐴)))
5849, 53, 573eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) = (abs‘(𝑌𝐴)))
5958ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑌) = (abs‘(𝑌𝐴)))
60 simprll 777 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑌) < 𝑟)
6159, 60eqbrtrrd 5173 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(𝑌𝐴)) < 𝑟)
6254ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐴 ∈ ℝ)
63 simplr 767 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑟 ∈ ℝ)
6447, 62, 63absdifltd 15416 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((abs‘(𝑌𝐴)) < 𝑟 ↔ ((𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
6561, 64mpbid 231 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟)))
6665simpld 493 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) < 𝑌)
6765simprd 494 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 < (𝐴 + 𝑟))
6862, 63resubcld 11674 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) ∈ ℝ)
6968rexrd 11296 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) ∈ ℝ*)
7062, 63readdcld 11275 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴 + 𝑟) ∈ ℝ)
7170rexrd 11296 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴 + 𝑟) ∈ ℝ*)
72 elioo2 13400 . . . . . . . . . . . . . . 15 (((𝐴𝑟) ∈ ℝ* ∧ (𝐴 + 𝑟) ∈ ℝ*) → (𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑌 ∈ ℝ ∧ (𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
7369, 71, 72syl2anc 582 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑌 ∈ ℝ ∧ (𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
7447, 66, 67, 73mpbir3and 1339 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)))
7544, 74sselid 3974 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))
7675fvresd 6916 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) = (𝐹𝑌))
7720, 45eleqtrd 2827 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍 ∈ ℝ)
7877ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ℝ)
79 xmetsym 24297 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑍𝑆) → (𝐴𝐽𝑍) = (𝑍𝐽𝐴))
809, 11, 20, 79syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) = (𝑍𝐽𝐴))
8152oveqd 7436 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍𝐽𝐴) = (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
8255remetdval 24749 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑍𝐴)))
8377, 54, 82syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑍𝐴)))
8480, 81, 833eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) = (abs‘(𝑍𝐴)))
8584ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑍) = (abs‘(𝑍𝐴)))
86 simprlr 778 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑍) < 𝑟)
8785, 86eqbrtrrd 5173 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(𝑍𝐴)) < 𝑟)
8878, 62, 63absdifltd 15416 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((abs‘(𝑍𝐴)) < 𝑟 ↔ ((𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
8987, 88mpbid 231 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟)))
9089simpld 493 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) < 𝑍)
9189simprd 494 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 < (𝐴 + 𝑟))
92 elioo2 13400 . . . . . . . . . . . . . . 15 (((𝐴𝑟) ∈ ℝ* ∧ (𝐴 + 𝑟) ∈ ℝ*) → (𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑍 ∈ ℝ ∧ (𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
9369, 71, 92syl2anc 582 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑍 ∈ ℝ ∧ (𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
9478, 90, 91, 93mpbir3and 1339 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)))
9544, 94sselid 3974 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))
9695fvresd 6916 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍) = (𝐹𝑍))
9776, 96oveq12d 7437 . . . . . . . . . 10 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍)) = ((𝐹𝑌) − (𝐹𝑍)))
9897fveq2d 6900 . . . . . . . . 9 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
999ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐽 ∈ (∞Met‘𝑆))
100 elicc2 13424 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑟) ∈ ℝ ∧ (𝐴 + 𝑟) ∈ ℝ) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
10168, 70, 100syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
102101biimpa 475 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟)))
103102simp1d 1139 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ∈ ℝ)
10445ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑆 = ℝ)
105103, 104eleqtrrd 2828 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥𝑆)
10611ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐴𝑆)
107 xmetcl 24281 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐽𝐴) ∈ ℝ*)
10899, 105, 106, 107syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) ∈ ℝ*)
10963adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 ∈ ℝ)
110109rexrd 11296 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 ∈ ℝ*)
11116ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑅 ∈ ℝ*)
11252ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐽 = ((abs ∘ − ) ↾ (ℝ × ℝ)))
113112oveqd 7436 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
11462adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐴 ∈ ℝ)
11555remetdval 24749 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑥𝐴)))
116103, 114, 115syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑥𝐴)))
117113, 116eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) = (abs‘(𝑥𝐴)))
118102simp2d 1140 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝐴𝑟) ≤ 𝑥)
119102simp3d 1141 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ≤ (𝐴 + 𝑟))
120103, 114, 109absdifled 15417 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → ((abs‘(𝑥𝐴)) ≤ 𝑟 ↔ ((𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
121118, 119, 120mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (abs‘(𝑥𝐴)) ≤ 𝑟)
122117, 121eqbrtrd 5171 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) ≤ 𝑟)
123 simplrr 776 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 < 𝑅)
124108, 110, 111, 122, 123xrlelttrd 13174 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) < 𝑅)
125 elbl3 24342 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ (∞Met‘𝑆) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝑥𝑆)) → (𝑥 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑥𝐽𝐴) < 𝑅))
12699, 111, 106, 105, 125syl22anc 837 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑥𝐽𝐴) < 𝑅))
127124, 126mpbird 256 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ∈ (𝐴(ball‘𝐽)𝑅))
128127ex 411 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) → 𝑥 ∈ (𝐴(ball‘𝐽)𝑅)))
129128ssrdv 3982 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ (𝐴(ball‘𝐽)𝑅))
130129, 13sseqtrrdi 4028 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ 𝐵)
131130resabs1d 6013 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) = (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))
132 ax-resscn 11197 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
133132a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ℝ ⊆ ℂ)
134 dvlip2.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℂ)
135134ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐹:𝑋⟶ℂ)
136 dvlip2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ dom (𝑆 D 𝐹))
137 dvlip2.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝑆)
1385, 134, 137dvbss 25874 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
139136, 138sstrd 3987 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝑋)
140139ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐵𝑋)
141135, 140fssresd 6764 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹𝐵):𝐵⟶ℂ)
142 blssm 24368 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝐴(ball‘𝐽)𝑅) ⊆ 𝑆)
1439, 11, 16, 142syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘𝐽)𝑅) ⊆ 𝑆)
14413, 143eqsstrid 4025 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵𝑆)
145144, 45sseqtrd 4017 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ ℝ)
146145ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐵 ⊆ ℝ)
147132a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ℝ ⊆ ℂ)
148134ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐹:𝑋⟶ℂ)
149137ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑋𝑆)
150149, 45sseqtrd 4017 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑋 ⊆ ℝ)
151 eqid 2725 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
152151tgioo2 24763 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
153151, 152dvres 25884 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)))
154147, 148, 150, 145, 153syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)))
155 retop 24722 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) ∈ Top
15652fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ball‘𝐽) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ))))
157156oveqd 7436 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘𝐽)𝑅) = (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅))
15813, 157eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 = (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅))
15952, 9eqeltrrd 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘𝑆))
160 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
16155, 160tgioo 24756 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
162161blopn 24453 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅) ∈ (topGen‘ran (,)))
163159, 11, 16, 162syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅) ∈ (topGen‘ran (,)))
164158, 163eqeltrd 2825 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ∈ (topGen‘ran (,)))
165 isopn3i 23030 . . . . . . . . . . . . . . . . . . . . 21 (((topGen‘ran (,)) ∈ Top ∧ 𝐵 ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘𝐵) = 𝐵)
166155, 164, 165sylancr 585 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((int‘(topGen‘ran (,)))‘𝐵) = 𝐵)
167166reseq2d 5985 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)) = ((ℝ D 𝐹) ↾ 𝐵))
168154, 167eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ 𝐵))
169168dmeqd 5908 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (ℝ D (𝐹𝐵)) = dom ((ℝ D 𝐹) ↾ 𝐵))
170 dmres 6017 . . . . . . . . . . . . . . . . . 18 dom ((ℝ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℝ D 𝐹))
171136ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ dom (𝑆 D 𝐹))
17245oveq1d 7434 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑆 D 𝐹) = (ℝ D 𝐹))
173172dmeqd 5908 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (𝑆 D 𝐹) = dom (ℝ D 𝐹))
174171, 173sseqtrd 4017 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ dom (ℝ D 𝐹))
175 dfss2 3962 . . . . . . . . . . . . . . . . . . 19 (𝐵 ⊆ dom (ℝ D 𝐹) ↔ (𝐵 ∩ dom (ℝ D 𝐹)) = 𝐵)
176174, 175sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐵 ∩ dom (ℝ D 𝐹)) = 𝐵)
177170, 176eqtrid 2777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom ((ℝ D 𝐹) ↾ 𝐵) = 𝐵)
178169, 177eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (ℝ D (𝐹𝐵)) = 𝐵)
179178ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹𝐵)) = 𝐵)
180 dvcn 25895 . . . . . . . . . . . . . . 15 (((ℝ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) ∧ dom (ℝ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
181133, 141, 146, 179, 180syl31anc 1370 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
182 rescncf 24861 . . . . . . . . . . . . . 14 (((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ 𝐵 → ((𝐹𝐵) ∈ (𝐵cn→ℂ) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ)))
183130, 181, 182sylc 65 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ))
184131, 183eqeltrrd 2826 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ))
185130, 146sstrd 3987 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ ℝ)
186151, 152dvres 25884 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ) ∧ (𝐵 ⊆ ℝ ∧ ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ ℝ)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))))
187133, 141, 146, 185, 186syl22anc 837 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))))
188131oveq2d 7435 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))))
189 iccntr 24781 . . . . . . . . . . . . . . . . 17 (((𝐴𝑟) ∈ ℝ ∧ (𝐴 + 𝑟) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
19068, 70, 189syl2anc 582 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
191190reseq2d 5985 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
192187, 188, 1913eqtr3d 2773 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
193192dmeqd 5908 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
194 dmres 6017 . . . . . . . . . . . . . 14 dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))) = (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵)))
19544, 130sstrid 3988 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ 𝐵)
196195, 179sseqtrrd 4018 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ dom (ℝ D (𝐹𝐵)))
197 dfss2 3962 . . . . . . . . . . . . . . 15 (((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ dom (ℝ D (𝐹𝐵)) ↔ (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
198196, 197sylib 217 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
199194, 198eqtrid 2777 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
200193, 199eqtrd 2765 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
201 dvlip2.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
202201ad4antr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑀 ∈ ℝ)
203192fveq1d 6898 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = (((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟)))‘𝑥))
204 fvres 6915 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) → (((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟)))‘𝑥) = ((ℝ D (𝐹𝐵))‘𝑥))
205203, 204sylan9eq 2785 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = ((ℝ D (𝐹𝐵))‘𝑥))
206172reseq1d 5984 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((𝑆 D 𝐹) ↾ 𝐵) = ((ℝ D 𝐹) ↾ 𝐵))
207168, 206eqtr4d 2768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ 𝐵))
208207fveq1d 6898 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((ℝ D (𝐹𝐵))‘𝑥) = (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥))
209208ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹𝐵))‘𝑥) = (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥))
210195sselda 3976 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → 𝑥𝐵)
211210fvresd 6916 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
212205, 209, 2113eqtrd 2769 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
213212fveq2d 6900 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥)) = (abs‘((𝑆 D 𝐹)‘𝑥)))
214 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝜑)
215 dvlip2.l . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
216214, 210, 215syl2an2r 683 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
217213, 216eqbrtrd 5171 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥)) ≤ 𝑀)
21868, 70, 184, 200, 202, 217dvlip 25970 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ (𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ∧ 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
219218ex 411 . . . . . . . . . 10 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ∧ 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
22075, 95, 219mp2and 697 . . . . . . . . 9 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
22198, 220eqbrtrrd 5173 . . . . . . . 8 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
222221exp32 419 . . . . . . 7 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) → (𝑟 < 𝑅 → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))))
22343, 222sylbid 239 . . . . . 6 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 → (𝑟 < 𝑅 → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))))
224223impd 409 . . . . 5 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
22540, 224sylan2 591 . . . 4 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℚ) → ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
226225rexlimdva 3144 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
22739, 226mpd 15 . 2 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
228 simpr 483 . . . . . . . . . . . . . 14 ((𝜑𝑆 = ℂ) → 𝑆 = ℂ)
229228sqxpeqd 5710 . . . . . . . . . . . . 13 ((𝜑𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
230229reseq2d 5985 . . . . . . . . . . . 12 ((𝜑𝑆 = ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
231 absf 15320 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
232 subf 11494 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
233 fco 6747 . . . . . . . . . . . . . 14 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
234231, 232, 233mp2an 690 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
235 ffn 6723 . . . . . . . . . . . . 13 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
236 fnresdm 6675 . . . . . . . . . . . . 13 ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ))
237234, 235, 236mp2b 10 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )
238230, 237eqtrdi 2781 . . . . . . . . . . 11 ((𝜑𝑆 = ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = (abs ∘ − ))
2391, 238eqtrid 2777 . . . . . . . . . 10 ((𝜑𝑆 = ℂ) → 𝐽 = (abs ∘ − ))
240239fveq2d 6900 . . . . . . . . 9 ((𝜑𝑆 = ℂ) → (ball‘𝐽) = (ball‘(abs ∘ − )))
241240oveqd 7436 . . . . . . . 8 ((𝜑𝑆 = ℂ) → (𝐴(ball‘𝐽)𝑅) = (𝐴(ball‘(abs ∘ − ))𝑅))
24213, 241eqtrid 2777 . . . . . . 7 ((𝜑𝑆 = ℂ) → 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅))
243242eleq2d 2811 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑌𝐵𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
244242eleq2d 2811 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑍𝐵𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
245243, 244anbi12d 630 . . . . 5 ((𝜑𝑆 = ℂ) → ((𝑌𝐵𝑍𝐵) ↔ (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅))))
246245biimpa 475 . . . 4 (((𝜑𝑆 = ℂ) ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
247137adantr 479 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝑋𝑆)
248247, 228sseqtrd 4017 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑋 ⊆ ℂ)
249134adantr 479 . . . . 5 ((𝜑𝑆 = ℂ) → 𝐹:𝑋⟶ℂ)
25010adantr 479 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝐴𝑆)
251250, 228eleqtrd 2827 . . . . 5 ((𝜑𝑆 = ℂ) → 𝐴 ∈ ℂ)
25215adantr 479 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑅 ∈ ℝ*)
253 eqid 2725 . . . . 5 (𝐴(ball‘(abs ∘ − ))𝑅) = (𝐴(ball‘(abs ∘ − ))𝑅)
254136adantr 479 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝐵 ⊆ dom (𝑆 D 𝐹))
255228oveq1d 7434 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑆 D 𝐹) = (ℂ D 𝐹))
256255dmeqd 5908 . . . . . 6 ((𝜑𝑆 = ℂ) → dom (𝑆 D 𝐹) = dom (ℂ D 𝐹))
257254, 242, 2563sstr3d 4023 . . . . 5 ((𝜑𝑆 = ℂ) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ dom (ℂ D 𝐹))
258201adantr 479 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑀 ∈ ℝ)
259215ex 411 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀))
260259adantr 479 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑥𝐵 → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀))
261242eleq2d 2811 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑥𝐵𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
262255fveq1d 6898 . . . . . . . . 9 ((𝜑𝑆 = ℂ) → ((𝑆 D 𝐹)‘𝑥) = ((ℂ D 𝐹)‘𝑥))
263262fveq2d 6900 . . . . . . . 8 ((𝜑𝑆 = ℂ) → (abs‘((𝑆 D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑥)))
264263breq1d 5159 . . . . . . 7 ((𝜑𝑆 = ℂ) → ((abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀))
265260, 261, 2643imtr3d 292 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀))
266265imp 405 . . . . 5 (((𝜑𝑆 = ℂ) ∧ 𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
267248, 249, 251, 252, 253, 257, 258, 266dvlipcn 25971 . . . 4 (((𝜑𝑆 = ℂ) ∧ (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅))) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
268246, 267syldan 589 . . 3 (((𝜑𝑆 = ℂ) ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
269268an32s 650 . 2 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℂ) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
270 elpri 4653 . . . 4 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
2713, 270syl 17 . . 3 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
272271adantr 479 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑆 = ℝ ∨ 𝑆 = ℂ))
273227, 269, 272mpjaodan 956 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  cin 3943  wss 3944  ifcif 4530  {cpr 4632   class class class wbr 5149   × cxp 5676  dom cdm 5678  ran crn 5679  cres 5680  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139   + caddc 11143   · cmul 11145  *cxr 11279   < clt 11280  cle 11281  cmin 11476  cq 12965  (,)cioo 13359  [,]cicc 13362  abscabs 15217  TopOpenctopn 17406  topGenctg 17422  ∞Metcxmet 21281  ballcbl 21283  MetOpencmopn 21286  fldccnfld 21296  Topctop 22839  intcnt 22965  cnccncf 24840   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  ulmdvlem1  26381  dvconstbi  43910
  Copyright terms: Public domain W3C validator