Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel2 Structured version   Visualization version   GIF version

Theorem pmtrcnel2 30898
 Description: Variation on pmtrcnel 30897. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))

Proof of Theorem pmtrcnel2
StepHypRef Expression
1 mvdco 18654 . . . . 5 dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
21a1i 11 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
3 coass 6100 . . . . . . . 8 (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹))
4 pmtrcnel.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
5 difss 4039 . . . . . . . . . . . . . . 15 (𝐹 ∖ I ) ⊆ 𝐹
6 dmss 5748 . . . . . . . . . . . . . . 15 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 dom (𝐹 ∖ I ) ⊆ dom 𝐹
8 pmtrcnel.i . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
97, 8sseldi 3892 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ dom 𝐹)
10 pmtrcnel.f . . . . . . . . . . . . . . 15 (𝜑𝐹𝐵)
11 pmtrcnel.s . . . . . . . . . . . . . . . 16 𝑆 = (SymGrp‘𝐷)
12 pmtrcnel.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑆)
1311, 12symgbasf1o 18584 . . . . . . . . . . . . . . 15 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
14 f1of 6607 . . . . . . . . . . . . . . 15 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
1510, 13, 143syl 18 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐷𝐷)
1615fdmd 6513 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐷)
179, 16eleqtrd 2854 . . . . . . . . . . . 12 (𝜑𝐼𝐷)
18 pmtrcnel.j . . . . . . . . . . . . 13 𝐽 = (𝐹𝐼)
1915, 17ffvelrnd 6849 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) ∈ 𝐷)
2018, 19eqeltrid 2856 . . . . . . . . . . . 12 (𝜑𝐽𝐷)
2117, 20prssd 4715 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2215ffnd 6504 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐷)
23 fnelnfp 6936 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2423biimpa 480 . . . . . . . . . . . . . . 15 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2522, 17, 8, 24syl21anc 836 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2625necomd 3006 . . . . . . . . . . . . 13 (𝜑𝐼 ≠ (𝐹𝐼))
2718a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 = (𝐹𝐼))
2826, 27neeqtrrd 3025 . . . . . . . . . . . 12 (𝜑𝐼𝐽)
29 pr2nelem 9477 . . . . . . . . . . . 12 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
3017, 20, 28, 29syl3anc 1368 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
31 pmtrcnel.t . . . . . . . . . . . 12 𝑇 = (pmTrsp‘𝐷)
32 eqid 2758 . . . . . . . . . . . 12 ran 𝑇 = ran 𝑇
3331, 32pmtrrn 18666 . . . . . . . . . . 11 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
344, 21, 30, 33syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
3531, 32pmtrff1o 18672 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
36 f1ococnv1 6635 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3734, 35, 363syl 18 . . . . . . . . 9 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3837coeq1d 5707 . . . . . . . 8 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (( I ↾ 𝐷) ∘ 𝐹))
393, 38eqtr3id 2807 . . . . . . 7 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = (( I ↾ 𝐷) ∘ 𝐹))
40 fcoi2 6543 . . . . . . . 8 (𝐹:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4115, 40syl 17 . . . . . . 7 (𝜑 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4239, 41eqtrd 2793 . . . . . 6 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = 𝐹)
4342difeq1d 4029 . . . . 5 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = (𝐹 ∖ I ))
4443dmeqd 5751 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = dom (𝐹 ∖ I ))
4531, 32pmtrfcnv 18673 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4634, 45syl 17 . . . . . . . . 9 (𝜑(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4746difeq1d 4029 . . . . . . . 8 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∖ I ) = ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4847dmeqd 5751 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = dom ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4931pmtrmvd 18665 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
504, 21, 30, 49syl3anc 1368 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5148, 50eqtrd 2793 . . . . . 6 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5251uneq1d 4069 . . . . 5 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
53 uncom 4060 . . . . 5 ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})
5452, 53eqtrdi 2809 . . . 4 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
552, 44, 543sstr3d 3940 . . 3 (𝜑 → dom (𝐹 ∖ I ) ⊆ (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
5655ssdifd 4048 . 2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}))
57 difun2 4380 . . 3 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽})
58 difss 4039 . . 3 (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
5957, 58eqsstri 3928 . 2 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
6056, 59sstrdi 3906 1 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ∖ cdif 3857   ∪ cun 3858   ⊆ wss 3860  {cpr 4527   class class class wbr 5036   I cid 5433  ◡ccnv 5527  dom cdm 5528  ran crn 5529   ↾ cres 5530   ∘ ccom 5532   Fn wfn 6335  ⟶wf 6336  –1-1-onto→wf1o 6339  ‘cfv 6340  2oc2o 8112   ≈ cen 8537  Basecbs 16555  SymGrpcsymg 18576  pmTrspcpmtr 18650 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-tset 16656  df-efmnd 18114  df-symg 18577  df-pmtr 18651 This theorem is referenced by:  pmtrcnelor  30899
 Copyright terms: Public domain W3C validator