Proof of Theorem pmtrcnel2
Step | Hyp | Ref
| Expression |
1 | | mvdco 19053 |
. . . . 5
⊢ dom
((◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → dom ((◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))) |
3 | | coass 6169 |
. . . . . . . 8
⊢ ((◡(𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) |
4 | | pmtrcnel.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
5 | | difss 4066 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∖ I ) ⊆ 𝐹 |
6 | | dmss 5811 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ∖ I ) ⊆ dom
𝐹 |
8 | | pmtrcnel.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ dom (𝐹 ∖ I )) |
9 | 7, 8 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ dom 𝐹) |
10 | | pmtrcnel.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
11 | | pmtrcnel.s |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = (SymGrp‘𝐷) |
12 | | pmtrcnel.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝑆) |
13 | 11, 12 | symgbasf1o 18982 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐷–1-1-onto→𝐷) |
14 | | f1of 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐷–1-1-onto→𝐷 → 𝐹:𝐷⟶𝐷) |
15 | 10, 13, 14 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐷⟶𝐷) |
16 | 15 | fdmd 6611 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 = 𝐷) |
17 | 9, 16 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
18 | | pmtrcnel.j |
. . . . . . . . . . . . 13
⊢ 𝐽 = (𝐹‘𝐼) |
19 | 15, 17 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐼) ∈ 𝐷) |
20 | 18, 19 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
21 | 17, 20 | prssd 4755 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
22 | 15 | ffnd 6601 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝐷) |
23 | | fnelnfp 7049 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝐼) ≠ 𝐼)) |
24 | 23 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝐼) ≠ 𝐼) |
25 | 22, 17, 8, 24 | syl21anc 835 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝐼) ≠ 𝐼) |
26 | 25 | necomd 2999 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ≠ (𝐹‘𝐼)) |
27 | 18 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 = (𝐹‘𝐼)) |
28 | 26, 27 | neeqtrrd 3018 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
29 | | pr2nelem 9760 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
30 | 17, 20, 28, 29 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐼, 𝐽} ≈ 2o) |
31 | | pmtrcnel.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (pmTrsp‘𝐷) |
32 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ran 𝑇 = ran 𝑇 |
33 | 31, 32 | pmtrrn 19065 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇) |
34 | 4, 21, 30, 33 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇) |
35 | 31, 32 | pmtrff1o 19071 |
. . . . . . . . . 10
⊢ ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷–1-1-onto→𝐷) |
36 | | f1ococnv1 6745 |
. . . . . . . . . 10
⊢ ((𝑇‘{𝐼, 𝐽}):𝐷–1-1-onto→𝐷 → (◡(𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
37 | 34, 35, 36 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (◡(𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
38 | 37 | coeq1d 5770 |
. . . . . . . 8
⊢ (𝜑 → ((◡(𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (( I ↾ 𝐷) ∘ 𝐹)) |
39 | 3, 38 | eqtr3id 2792 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = (( I ↾ 𝐷) ∘ 𝐹)) |
40 | | fcoi2 6649 |
. . . . . . . 8
⊢ (𝐹:𝐷⟶𝐷 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹) |
41 | 15, 40 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹) |
42 | 39, 41 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = 𝐹) |
43 | 42 | difeq1d 4056 |
. . . . 5
⊢ (𝜑 → ((◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = (𝐹 ∖ I )) |
44 | 43 | dmeqd 5814 |
. . . 4
⊢ (𝜑 → dom ((◡(𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = dom (𝐹 ∖ I )) |
45 | 31, 32 | pmtrfcnv 19072 |
. . . . . . . . . 10
⊢ ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → ◡(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽})) |
46 | 34, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽})) |
47 | 46 | difeq1d 4056 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) = ((𝑇‘{𝐼, 𝐽}) ∖ I )) |
48 | 47 | dmeqd 5814 |
. . . . . . 7
⊢ (𝜑 → dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) = dom ((𝑇‘{𝐼, 𝐽}) ∖ I )) |
49 | 31 | pmtrmvd 19064 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽}) |
50 | 4, 21, 30, 49 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽}) |
51 | 48, 50 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽}) |
52 | 51 | uneq1d 4096 |
. . . . 5
⊢ (𝜑 → (dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))) |
53 | | uncom 4087 |
. . . . 5
⊢ ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) |
54 | 52, 53 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → (dom (◡(𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})) |
55 | 2, 44, 54 | 3sstr3d 3967 |
. . 3
⊢ (𝜑 → dom (𝐹 ∖ I ) ⊆ (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})) |
56 | 55 | ssdifd 4075 |
. 2
⊢ (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽})) |
57 | | difun2 4414 |
. . 3
⊢ ((dom
(((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) |
58 | | difss 4066 |
. . 3
⊢ (dom
(((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) |
59 | 57, 58 | eqsstri 3955 |
. 2
⊢ ((dom
(((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) |
60 | 56, 59 | sstrdi 3933 |
1
⊢ (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |