Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel2 Structured version   Visualization version   GIF version

Theorem pmtrcnel2 31990
Description: Variation on pmtrcnel 31989. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))

Proof of Theorem pmtrcnel2
StepHypRef Expression
1 mvdco 19232 . . . . 5 dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
21a1i 11 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
3 coass 6218 . . . . . . . 8 (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹))
4 pmtrcnel.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
5 difss 4092 . . . . . . . . . . . . . . 15 (𝐹 ∖ I ) ⊆ 𝐹
6 dmss 5859 . . . . . . . . . . . . . . 15 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 dom (𝐹 ∖ I ) ⊆ dom 𝐹
8 pmtrcnel.i . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
97, 8sselid 3943 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ dom 𝐹)
10 pmtrcnel.f . . . . . . . . . . . . . . 15 (𝜑𝐹𝐵)
11 pmtrcnel.s . . . . . . . . . . . . . . . 16 𝑆 = (SymGrp‘𝐷)
12 pmtrcnel.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑆)
1311, 12symgbasf1o 19161 . . . . . . . . . . . . . . 15 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
14 f1of 6785 . . . . . . . . . . . . . . 15 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
1510, 13, 143syl 18 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐷𝐷)
1615fdmd 6680 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐷)
179, 16eleqtrd 2836 . . . . . . . . . . . 12 (𝜑𝐼𝐷)
18 pmtrcnel.j . . . . . . . . . . . . 13 𝐽 = (𝐹𝐼)
1915, 17ffvelcdmd 7037 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) ∈ 𝐷)
2018, 19eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝐽𝐷)
2117, 20prssd 4783 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2215ffnd 6670 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐷)
23 fnelnfp 7124 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2423biimpa 478 . . . . . . . . . . . . . . 15 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2522, 17, 8, 24syl21anc 837 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2625necomd 2996 . . . . . . . . . . . . 13 (𝜑𝐼 ≠ (𝐹𝐼))
2718a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 = (𝐹𝐼))
2826, 27neeqtrrd 3015 . . . . . . . . . . . 12 (𝜑𝐼𝐽)
29 enpr2 9943 . . . . . . . . . . . 12 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
3017, 20, 28, 29syl3anc 1372 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
31 pmtrcnel.t . . . . . . . . . . . 12 𝑇 = (pmTrsp‘𝐷)
32 eqid 2733 . . . . . . . . . . . 12 ran 𝑇 = ran 𝑇
3331, 32pmtrrn 19244 . . . . . . . . . . 11 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
344, 21, 30, 33syl3anc 1372 . . . . . . . . . 10 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
3531, 32pmtrff1o 19250 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
36 f1ococnv1 6814 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3734, 35, 363syl 18 . . . . . . . . 9 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3837coeq1d 5818 . . . . . . . 8 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (( I ↾ 𝐷) ∘ 𝐹))
393, 38eqtr3id 2787 . . . . . . 7 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = (( I ↾ 𝐷) ∘ 𝐹))
40 fcoi2 6718 . . . . . . . 8 (𝐹:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4115, 40syl 17 . . . . . . 7 (𝜑 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4239, 41eqtrd 2773 . . . . . 6 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = 𝐹)
4342difeq1d 4082 . . . . 5 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = (𝐹 ∖ I ))
4443dmeqd 5862 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = dom (𝐹 ∖ I ))
4531, 32pmtrfcnv 19251 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4634, 45syl 17 . . . . . . . . 9 (𝜑(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4746difeq1d 4082 . . . . . . . 8 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∖ I ) = ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4847dmeqd 5862 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = dom ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4931pmtrmvd 19243 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
504, 21, 30, 49syl3anc 1372 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5148, 50eqtrd 2773 . . . . . 6 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5251uneq1d 4123 . . . . 5 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
53 uncom 4114 . . . . 5 ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})
5452, 53eqtrdi 2789 . . . 4 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
552, 44, 543sstr3d 3991 . . 3 (𝜑 → dom (𝐹 ∖ I ) ⊆ (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
5655ssdifd 4101 . 2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}))
57 difun2 4441 . . 3 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽})
58 difss 4092 . . 3 (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
5957, 58eqsstri 3979 . 2 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
6056, 59sstrdi 3957 1 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  cdif 3908  cun 3909  wss 3911  {cpr 4589   class class class wbr 5106   I cid 5531  ccnv 5633  dom cdm 5634  ran crn 5635  cres 5636  ccom 5638   Fn wfn 6492  wf 6493  1-1-ontowf1o 6496  cfv 6497  2oc2o 8407  cen 8883  Basecbs 17088  SymGrpcsymg 19153  pmTrspcpmtr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-tset 17157  df-efmnd 18684  df-symg 19154  df-pmtr 19229
This theorem is referenced by:  pmtrcnelor  31991
  Copyright terms: Public domain W3C validator