Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel2 Structured version   Visualization version   GIF version

Theorem pmtrcnel2 33047
Description: Variation on pmtrcnel 33046. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))

Proof of Theorem pmtrcnel2
StepHypRef Expression
1 mvdco 19424 . . . . 5 dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
21a1i 11 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
3 coass 6254 . . . . . . . 8 (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹))
4 pmtrcnel.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
5 difss 4111 . . . . . . . . . . . . . . 15 (𝐹 ∖ I ) ⊆ 𝐹
6 dmss 5882 . . . . . . . . . . . . . . 15 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 dom (𝐹 ∖ I ) ⊆ dom 𝐹
8 pmtrcnel.i . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
97, 8sselid 3956 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ dom 𝐹)
10 pmtrcnel.f . . . . . . . . . . . . . . 15 (𝜑𝐹𝐵)
11 pmtrcnel.s . . . . . . . . . . . . . . . 16 𝑆 = (SymGrp‘𝐷)
12 pmtrcnel.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑆)
1311, 12symgbasf1o 19354 . . . . . . . . . . . . . . 15 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
14 f1of 6817 . . . . . . . . . . . . . . 15 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
1510, 13, 143syl 18 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐷𝐷)
1615fdmd 6715 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐷)
179, 16eleqtrd 2836 . . . . . . . . . . . 12 (𝜑𝐼𝐷)
18 pmtrcnel.j . . . . . . . . . . . . 13 𝐽 = (𝐹𝐼)
1915, 17ffvelcdmd 7074 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) ∈ 𝐷)
2018, 19eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝐽𝐷)
2117, 20prssd 4798 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2215ffnd 6706 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐷)
23 fnelnfp 7168 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2423biimpa 476 . . . . . . . . . . . . . . 15 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2522, 17, 8, 24syl21anc 837 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2625necomd 2987 . . . . . . . . . . . . 13 (𝜑𝐼 ≠ (𝐹𝐼))
2718a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 = (𝐹𝐼))
2826, 27neeqtrrd 3006 . . . . . . . . . . . 12 (𝜑𝐼𝐽)
29 enpr2 10014 . . . . . . . . . . . 12 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
3017, 20, 28, 29syl3anc 1373 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
31 pmtrcnel.t . . . . . . . . . . . 12 𝑇 = (pmTrsp‘𝐷)
32 eqid 2735 . . . . . . . . . . . 12 ran 𝑇 = ran 𝑇
3331, 32pmtrrn 19436 . . . . . . . . . . 11 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
344, 21, 30, 33syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
3531, 32pmtrff1o 19442 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
36 f1ococnv1 6846 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3734, 35, 363syl 18 . . . . . . . . 9 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3837coeq1d 5841 . . . . . . . 8 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (( I ↾ 𝐷) ∘ 𝐹))
393, 38eqtr3id 2784 . . . . . . 7 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = (( I ↾ 𝐷) ∘ 𝐹))
40 fcoi2 6752 . . . . . . . 8 (𝐹:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4115, 40syl 17 . . . . . . 7 (𝜑 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4239, 41eqtrd 2770 . . . . . 6 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = 𝐹)
4342difeq1d 4100 . . . . 5 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = (𝐹 ∖ I ))
4443dmeqd 5885 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = dom (𝐹 ∖ I ))
4531, 32pmtrfcnv 19443 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4634, 45syl 17 . . . . . . . . 9 (𝜑(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4746difeq1d 4100 . . . . . . . 8 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∖ I ) = ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4847dmeqd 5885 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = dom ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4931pmtrmvd 19435 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
504, 21, 30, 49syl3anc 1373 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5148, 50eqtrd 2770 . . . . . 6 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5251uneq1d 4142 . . . . 5 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
53 uncom 4133 . . . . 5 ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})
5452, 53eqtrdi 2786 . . . 4 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
552, 44, 543sstr3d 4013 . . 3 (𝜑 → dom (𝐹 ∖ I ) ⊆ (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
5655ssdifd 4120 . 2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}))
57 difun2 4456 . . 3 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽})
58 difss 4111 . . 3 (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
5957, 58eqsstri 4005 . 2 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
6056, 59sstrdi 3971 1 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  wss 3926  {cpr 4603   class class class wbr 5119   I cid 5547  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  ccom 5658   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  2oc2o 8472  cen 8954  Basecbs 17226  SymGrpcsymg 19348  pmTrspcpmtr 19420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-tset 17288  df-efmnd 18845  df-symg 19349  df-pmtr 19421
This theorem is referenced by:  pmtrcnelor  33048
  Copyright terms: Public domain W3C validator