Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel2 Structured version   Visualization version   GIF version

Theorem pmtrcnel2 32238
Description: Variation on pmtrcnel 32237. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))

Proof of Theorem pmtrcnel2
StepHypRef Expression
1 mvdco 19307 . . . . 5 dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
21a1i 11 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
3 coass 6261 . . . . . . . 8 (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹))
4 pmtrcnel.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
5 difss 4130 . . . . . . . . . . . . . . 15 (𝐹 ∖ I ) ⊆ 𝐹
6 dmss 5900 . . . . . . . . . . . . . . 15 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 dom (𝐹 ∖ I ) ⊆ dom 𝐹
8 pmtrcnel.i . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
97, 8sselid 3979 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ dom 𝐹)
10 pmtrcnel.f . . . . . . . . . . . . . . 15 (𝜑𝐹𝐵)
11 pmtrcnel.s . . . . . . . . . . . . . . . 16 𝑆 = (SymGrp‘𝐷)
12 pmtrcnel.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑆)
1311, 12symgbasf1o 19236 . . . . . . . . . . . . . . 15 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
14 f1of 6830 . . . . . . . . . . . . . . 15 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
1510, 13, 143syl 18 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐷𝐷)
1615fdmd 6725 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐷)
179, 16eleqtrd 2835 . . . . . . . . . . . 12 (𝜑𝐼𝐷)
18 pmtrcnel.j . . . . . . . . . . . . 13 𝐽 = (𝐹𝐼)
1915, 17ffvelcdmd 7084 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) ∈ 𝐷)
2018, 19eqeltrid 2837 . . . . . . . . . . . 12 (𝜑𝐽𝐷)
2117, 20prssd 4824 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2215ffnd 6715 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐷)
23 fnelnfp 7171 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2423biimpa 477 . . . . . . . . . . . . . . 15 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2522, 17, 8, 24syl21anc 836 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2625necomd 2996 . . . . . . . . . . . . 13 (𝜑𝐼 ≠ (𝐹𝐼))
2718a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 = (𝐹𝐼))
2826, 27neeqtrrd 3015 . . . . . . . . . . . 12 (𝜑𝐼𝐽)
29 enpr2 9993 . . . . . . . . . . . 12 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
3017, 20, 28, 29syl3anc 1371 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2o)
31 pmtrcnel.t . . . . . . . . . . . 12 𝑇 = (pmTrsp‘𝐷)
32 eqid 2732 . . . . . . . . . . . 12 ran 𝑇 = ran 𝑇
3331, 32pmtrrn 19319 . . . . . . . . . . 11 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
344, 21, 30, 33syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
3531, 32pmtrff1o 19325 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
36 f1ococnv1 6859 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3734, 35, 363syl 18 . . . . . . . . 9 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
3837coeq1d 5859 . . . . . . . 8 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ (𝑇‘{𝐼, 𝐽})) ∘ 𝐹) = (( I ↾ 𝐷) ∘ 𝐹))
393, 38eqtr3id 2786 . . . . . . 7 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = (( I ↾ 𝐷) ∘ 𝐹))
40 fcoi2 6763 . . . . . . . 8 (𝐹:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4115, 40syl 17 . . . . . . 7 (𝜑 → (( I ↾ 𝐷) ∘ 𝐹) = 𝐹)
4239, 41eqtrd 2772 . . . . . 6 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) = 𝐹)
4342difeq1d 4120 . . . . 5 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = (𝐹 ∖ I ))
4443dmeqd 5903 . . . 4 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)) ∖ I ) = dom (𝐹 ∖ I ))
4531, 32pmtrfcnv 19326 . . . . . . . . . 10 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4634, 45syl 17 . . . . . . . . 9 (𝜑(𝑇‘{𝐼, 𝐽}) = (𝑇‘{𝐼, 𝐽}))
4746difeq1d 4120 . . . . . . . 8 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∖ I ) = ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4847dmeqd 5903 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = dom ((𝑇‘{𝐼, 𝐽}) ∖ I ))
4931pmtrmvd 19318 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
504, 21, 30, 49syl3anc 1371 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5148, 50eqtrd 2772 . . . . . 6 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
5251uneq1d 4161 . . . . 5 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
53 uncom 4152 . . . . 5 ({𝐼, 𝐽} ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽})
5452, 53eqtrdi 2788 . . . 4 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
552, 44, 543sstr3d 4027 . . 3 (𝜑 → dom (𝐹 ∖ I ) ⊆ (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}))
5655ssdifd 4139 . 2 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}))
57 difun2 4479 . . 3 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) = (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽})
58 difss 4130 . . 3 (dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
5957, 58eqsstri 4015 . 2 ((dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ∪ {𝐼, 𝐽}) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
6056, 59sstrdi 3993 1 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  cdif 3944  cun 3945  wss 3947  {cpr 4629   class class class wbr 5147   I cid 5572  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  ccom 5679   Fn wfn 6535  wf 6536  1-1-ontowf1o 6539  cfv 6540  2oc2o 8456  cen 8932  Basecbs 17140  SymGrpcsymg 19228  pmTrspcpmtr 19303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229  df-pmtr 19304
This theorem is referenced by:  pmtrcnelor  32239
  Copyright terms: Public domain W3C validator