MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Structured version   Visualization version   GIF version

Theorem bcthlem4 25225
Description: Lemma for bcth 25227. Given any open ball (𝐶(ball‘𝐷)𝑅) as starting point (and in particular, a ball in int( ran 𝑀)), the limit point 𝑥 of the centers of the induced sequence of balls 𝑔 is outside ran 𝑀. Note that a set 𝐴 has empty interior iff every nonempty open set 𝑈 contains points outside 𝐴, i.e. (𝑈𝐴) ≠ ∅. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem4 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem4
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25184 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24220 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 bcthlem.9 . . . . 5 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
7 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
8 bcthlem.5 . . . . . 6 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
9 bcthlem.6 . . . . . 6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
10 bcthlem.7 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
11 bcthlem.8 . . . . . 6 (𝜑𝐶𝑋)
12 bcthlem.10 . . . . . 6 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
13 bcthlem.11 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 25223 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
15 elrp 12895 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
16 nnrecl 12382 . . . . . . . . 9 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1715, 16sylbi 217 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1817adantl 481 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
19 peano2nn 12140 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2019adantl 481 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
21 fvoveq1 7372 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1)))
22 id 22 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚𝑘 = 𝑚)
23 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑔𝑘) = (𝑔𝑚))
2422, 23oveq12d 7367 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑘𝐹(𝑔𝑘)) = (𝑚𝐹(𝑔𝑚)))
2521, 24eleq12d 2822 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚))))
2625rspccva 3576 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
2713, 26sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
286ffvelcdmda 7018 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔𝑚) ∈ (𝑋 × ℝ+))
297, 1, 8bcthlem1 25222 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔𝑚) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3029expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑔𝑚) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))))
3128, 30mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3227, 31mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))
3332simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3433adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3532simp1d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+))
36 xp2nd 7957 . . . . . . . . . . . . . 14 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3735, 36syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3837rpred 12937 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
3938adantlr 715 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
40 nnrecre 12170 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
4140adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
42 rpre 12902 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4342ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑟 ∈ ℝ)
44 lttr 11192 . . . . . . . . . . 11 (((2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4539, 41, 43, 44syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4634, 45mpand 695 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
47 2fveq3 6827 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (2nd ‘(𝑔𝑛)) = (2nd ‘(𝑔‘(𝑚 + 1))))
4847breq1d 5102 . . . . . . . . . 10 (𝑛 = (𝑚 + 1) → ((2nd ‘(𝑔𝑛)) < 𝑟 ↔ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4948rspcev 3577 . . . . . . . . 9 (((𝑚 + 1) ∈ ℕ ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5020, 46, 49syl6an 684 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5150rexlimdva 3130 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5218, 51mpd 15 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5352ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
545, 6, 14, 53caubl 25206 . . . 4 (𝜑 → (1st𝑔) ∈ (Cau‘𝐷))
557cmetcau 25187 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑔) ∈ (Cau‘𝐷)) → (1st𝑔) ∈ dom (⇝𝑡𝐽))
561, 54, 55syl2anc 584 . . 3 (𝜑 → (1st𝑔) ∈ dom (⇝𝑡𝐽))
57 fo1st 7944 . . . . . 6 1st :V–onto→V
58 fofun 6737 . . . . . 6 (1st :V–onto→V → Fun 1st )
5957, 58ax-mp 5 . . . . 5 Fun 1st
60 vex 3440 . . . . 5 𝑔 ∈ V
61 cofunexg 7884 . . . . 5 ((Fun 1st𝑔 ∈ V) → (1st𝑔) ∈ V)
6259, 60, 61mp2an 692 . . . 4 (1st𝑔) ∈ V
6362eldm 5843 . . 3 ((1st𝑔) ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
6456, 63sylib 218 . 2 (𝜑 → ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
65 1nn 12139 . . . . . 6 1 ∈ ℕ
667, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25224 . . . . . 6 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ 1 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6765, 66mp3an3 1452 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6812fveq2d 6826 . . . . . . 7 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩))
69 df-ov 7352 . . . . . . 7 (𝐶(ball‘𝐷)𝑅) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩)
7068, 69eqtr4di 2782 . . . . . 6 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7170adantr 480 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7267, 71eleqtrd 2830 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐶(ball‘𝐷)𝑅))
737mopntop 24326 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
745, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐽 ∈ Top)
765adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
77 xp1st 7956 . . . . . . . . . . . . . . 15 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7835, 77syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7937rpxrd 12938 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*)
80 blssm 24304 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
8176, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
82 df-ov 7352 . . . . . . . . . . . . . 14 ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
83 1st2nd2 7963 . . . . . . . . . . . . . . . 16 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8435, 83syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8584fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩))
8682, 85eqtr4id 2783 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
877mopnuni 24327 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
885, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 = 𝐽)
8988adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑋 = 𝐽)
9081, 86, 893sstr3d 3990 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽)
91 eqid 2729 . . . . . . . . . . . . 13 𝐽 = 𝐽
9291sscls 22941 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9375, 90, 92syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9432simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
9593, 94sstrd 3946 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
96953adant2 1131 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
977, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25224 . . . . . . . . . 10 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝑚 + 1) ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9819, 97syl3an3 1165 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9996, 98sseldd 3936 . . . . . . . 8 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
10099eldifbd 3916 . . . . . . 7 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
1011003expa 1118 . . . . . 6 (((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
102101ralrimiva 3121 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚))
103 eluni2 4862 . . . . . . . . 9 (𝑥 ran 𝑀 ↔ ∃𝑦 ∈ ran 𝑀 𝑥𝑦)
1049ffnd 6653 . . . . . . . . . 10 (𝜑𝑀 Fn ℕ)
105 eleq2 2817 . . . . . . . . . . 11 (𝑦 = (𝑀𝑚) → (𝑥𝑦𝑥 ∈ (𝑀𝑚)))
106105rexrn 7021 . . . . . . . . . 10 (𝑀 Fn ℕ → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
107104, 106syl 17 . . . . . . . . 9 (𝜑 → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
108103, 107bitrid 283 . . . . . . . 8 (𝜑 → (𝑥 ran 𝑀 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
109108notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
110 ralnex 3055 . . . . . . 7 (∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚) ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚))
111109, 110bitr4di 289 . . . . . 6 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)))
112111biimpar 477 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)) → ¬ 𝑥 ran 𝑀)
113102, 112syldan 591 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ¬ 𝑥 ran 𝑀)
11472, 113eldifd 3914 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀))
115114ne0d 4293 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
11664, 115exlimddv 1935 1 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  wss 3903  c0 4284  cop 4583   cuni 4858   class class class wbr 5092  {copab 5154   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149   / cdiv 11777  cn 12128  +crp 12893  ∞Metcxmet 21246  Metcmet 21247  ballcbl 21248  MetOpencmopn 21251  Topctop 22778  Clsdccld 22901  clsccl 22903  𝑡clm 23111  Cauccau 25151  CMetccmet 25152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lm 23114  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155
This theorem is referenced by:  bcthlem5  25226
  Copyright terms: Public domain W3C validator