MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Structured version   Visualization version   GIF version

Theorem bcthlem4 25254
Description: Lemma for bcth 25256. Given any open ball (𝐶(ball‘𝐷)𝑅) as starting point (and in particular, a ball in int( ran 𝑀)), the limit point 𝑥 of the centers of the induced sequence of balls 𝑔 is outside ran 𝑀. Note that a set 𝐴 has empty interior iff every nonempty open set 𝑈 contains points outside 𝐴, i.e. (𝑈𝐴) ≠ ∅. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem4 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem4
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25213 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24249 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 bcthlem.9 . . . . 5 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
7 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
8 bcthlem.5 . . . . . 6 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
9 bcthlem.6 . . . . . 6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
10 bcthlem.7 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
11 bcthlem.8 . . . . . 6 (𝜑𝐶𝑋)
12 bcthlem.10 . . . . . 6 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
13 bcthlem.11 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 25252 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
15 elrp 12892 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
16 nnrecl 12379 . . . . . . . . 9 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1715, 16sylbi 217 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1817adantl 481 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
19 peano2nn 12137 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2019adantl 481 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
21 fvoveq1 7369 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1)))
22 id 22 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚𝑘 = 𝑚)
23 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑔𝑘) = (𝑔𝑚))
2422, 23oveq12d 7364 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑘𝐹(𝑔𝑘)) = (𝑚𝐹(𝑔𝑚)))
2521, 24eleq12d 2825 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚))))
2625rspccva 3571 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
2713, 26sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
286ffvelcdmda 7017 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔𝑚) ∈ (𝑋 × ℝ+))
297, 1, 8bcthlem1 25251 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔𝑚) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3029expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑔𝑚) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))))
3128, 30mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3227, 31mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))
3332simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3433adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3532simp1d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+))
36 xp2nd 7954 . . . . . . . . . . . . . 14 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3735, 36syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3837rpred 12934 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
3938adantlr 715 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
40 nnrecre 12167 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
4140adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
42 rpre 12899 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4342ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑟 ∈ ℝ)
44 lttr 11189 . . . . . . . . . . 11 (((2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4539, 41, 43, 44syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4634, 45mpand 695 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
47 2fveq3 6827 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (2nd ‘(𝑔𝑛)) = (2nd ‘(𝑔‘(𝑚 + 1))))
4847breq1d 5099 . . . . . . . . . 10 (𝑛 = (𝑚 + 1) → ((2nd ‘(𝑔𝑛)) < 𝑟 ↔ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4948rspcev 3572 . . . . . . . . 9 (((𝑚 + 1) ∈ ℕ ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5020, 46, 49syl6an 684 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5150rexlimdva 3133 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5218, 51mpd 15 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5352ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
545, 6, 14, 53caubl 25235 . . . 4 (𝜑 → (1st𝑔) ∈ (Cau‘𝐷))
557cmetcau 25216 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑔) ∈ (Cau‘𝐷)) → (1st𝑔) ∈ dom (⇝𝑡𝐽))
561, 54, 55syl2anc 584 . . 3 (𝜑 → (1st𝑔) ∈ dom (⇝𝑡𝐽))
57 fo1st 7941 . . . . . 6 1st :V–onto→V
58 fofun 6736 . . . . . 6 (1st :V–onto→V → Fun 1st )
5957, 58ax-mp 5 . . . . 5 Fun 1st
60 vex 3440 . . . . 5 𝑔 ∈ V
61 cofunexg 7881 . . . . 5 ((Fun 1st𝑔 ∈ V) → (1st𝑔) ∈ V)
6259, 60, 61mp2an 692 . . . 4 (1st𝑔) ∈ V
6362eldm 5839 . . 3 ((1st𝑔) ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
6456, 63sylib 218 . 2 (𝜑 → ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
65 1nn 12136 . . . . . 6 1 ∈ ℕ
667, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25253 . . . . . 6 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ 1 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6765, 66mp3an3 1452 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6812fveq2d 6826 . . . . . . 7 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩))
69 df-ov 7349 . . . . . . 7 (𝐶(ball‘𝐷)𝑅) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩)
7068, 69eqtr4di 2784 . . . . . 6 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7170adantr 480 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7267, 71eleqtrd 2833 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐶(ball‘𝐷)𝑅))
737mopntop 24355 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
745, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐽 ∈ Top)
765adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
77 xp1st 7953 . . . . . . . . . . . . . . 15 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7835, 77syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7937rpxrd 12935 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*)
80 blssm 24333 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
8176, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
82 df-ov 7349 . . . . . . . . . . . . . 14 ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
83 1st2nd2 7960 . . . . . . . . . . . . . . . 16 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8435, 83syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8584fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩))
8682, 85eqtr4id 2785 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
877mopnuni 24356 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
885, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 = 𝐽)
8988adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑋 = 𝐽)
9081, 86, 893sstr3d 3984 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽)
91 eqid 2731 . . . . . . . . . . . . 13 𝐽 = 𝐽
9291sscls 22971 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9375, 90, 92syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9432simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
9593, 94sstrd 3940 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
96953adant2 1131 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
977, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25253 . . . . . . . . . 10 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝑚 + 1) ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9819, 97syl3an3 1165 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9996, 98sseldd 3930 . . . . . . . 8 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
10099eldifbd 3910 . . . . . . 7 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
1011003expa 1118 . . . . . 6 (((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
102101ralrimiva 3124 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚))
103 eluni2 4860 . . . . . . . . 9 (𝑥 ran 𝑀 ↔ ∃𝑦 ∈ ran 𝑀 𝑥𝑦)
1049ffnd 6652 . . . . . . . . . 10 (𝜑𝑀 Fn ℕ)
105 eleq2 2820 . . . . . . . . . . 11 (𝑦 = (𝑀𝑚) → (𝑥𝑦𝑥 ∈ (𝑀𝑚)))
106105rexrn 7020 . . . . . . . . . 10 (𝑀 Fn ℕ → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
107104, 106syl 17 . . . . . . . . 9 (𝜑 → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
108103, 107bitrid 283 . . . . . . . 8 (𝜑 → (𝑥 ran 𝑀 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
109108notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
110 ralnex 3058 . . . . . . 7 (∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚) ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚))
111109, 110bitr4di 289 . . . . . 6 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)))
112111biimpar 477 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)) → ¬ 𝑥 ran 𝑀)
113102, 112syldan 591 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ¬ 𝑥 ran 𝑀)
11472, 113eldifd 3908 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀))
115114ne0d 4289 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
11664, 115exlimddv 1936 1 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  c0 4280  cop 4579   cuni 4856   class class class wbr 5089  {copab 5151   × cxp 5612  dom cdm 5614  ran crn 5615  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146   / cdiv 11774  cn 12125  +crp 12890  ∞Metcxmet 21276  Metcmet 21277  ballcbl 21278  MetOpencmopn 21281  Topctop 22808  Clsdccld 22931  clsccl 22933  𝑡clm 23141  Cauccau 25180  CMetccmet 25181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lm 23144  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-cfil 25182  df-cau 25183  df-cmet 25184
This theorem is referenced by:  bcthlem5  25255
  Copyright terms: Public domain W3C validator