Step | Hyp | Ref
| Expression |
1 | | bcthlem.4 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
2 | | cmetmet 24355 |
. . . . . . 7
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | metxmet 23395 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | bcthlem.9 |
. . . . 5
⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 ×
ℝ+)) |
7 | | bcth.2 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
8 | | bcthlem.5 |
. . . . . 6
⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
9 | | bcthlem.6 |
. . . . . 6
⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
10 | | bcthlem.7 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
11 | | bcthlem.8 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
12 | | bcthlem.10 |
. . . . . 6
⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) |
13 | | bcthlem.11 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
14 | 7, 1, 8, 9, 10, 11, 6, 12, 13 | bcthlem2 24394 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
15 | | elrp 12661 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
↔ (𝑟 ∈ ℝ
∧ 0 < 𝑟)) |
16 | | nnrecl 12161 |
. . . . . . . . 9
⊢ ((𝑟 ∈ ℝ ∧ 0 <
𝑟) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟) |
17 | 15, 16 | sylbi 216 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ ∃𝑚 ∈
ℕ (1 / 𝑚) < 𝑟) |
18 | 17 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑚 ∈ ℕ (1
/ 𝑚) < 𝑟) |
19 | | peano2nn 11915 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
20 | 19 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈
ℕ) |
21 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1))) |
22 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → 𝑘 = 𝑚) |
23 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝑔‘𝑘) = (𝑔‘𝑚)) |
24 | 22, 23 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝑘𝐹(𝑔‘𝑘)) = (𝑚𝐹(𝑔‘𝑚))) |
25 | 21, 24 | eleq12d 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚)))) |
26 | 25 | rspccva 3551 |
. . . . . . . . . . . . . 14
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚))) |
27 | 13, 26 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚))) |
28 | 6 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑔‘𝑚) ∈ (𝑋 ×
ℝ+)) |
29 | 7, 1, 8 | bcthlem1 24393 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔‘𝑚) ∈ (𝑋 × ℝ+))) →
((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))))) |
30 | 29 | expr 456 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑔‘𝑚) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚)))))) |
31 | 28, 30 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔‘𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))))) |
32 | 27, 31 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚)))) |
33 | 32 | simp2d 1141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚)) |
34 | 33 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) →
(2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚)) |
35 | 32 | simp1d 1140 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑋 ×
ℝ+)) |
36 | | xp2nd 7837 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝑔‘(𝑚 + 1))) ∈
ℝ+) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝑔‘(𝑚 + 1))) ∈
ℝ+) |
38 | 37 | rpred 12701 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝑔‘(𝑚 + 1))) ∈
ℝ) |
39 | 38 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) →
(2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ) |
40 | | nnrecre 11945 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (1 /
𝑚) ∈
ℝ) |
41 | 40 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (1 /
𝑚) ∈
ℝ) |
42 | | rpre 12667 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
43 | 42 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑟 ∈
ℝ) |
44 | | lttr 10982 |
. . . . . . . . . . 11
⊢
(((2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ ∧ 𝑟 ∈ ℝ) →
(((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟)) |
45 | 39, 41, 43, 44 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) →
(((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟)) |
46 | 34, 45 | mpand 691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 /
𝑚) < 𝑟 → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟)) |
47 | | 2fveq3 6761 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → (2nd ‘(𝑔‘𝑛)) = (2nd ‘(𝑔‘(𝑚 + 1)))) |
48 | 47 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 + 1) → ((2nd ‘(𝑔‘𝑛)) < 𝑟 ↔ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟)) |
49 | 48 | rspcev 3552 |
. . . . . . . . 9
⊢ (((𝑚 + 1) ∈ ℕ ∧
(2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔‘𝑛)) < 𝑟) |
50 | 20, 46, 49 | syl6an 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 /
𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔‘𝑛)) < 𝑟)) |
51 | 50 | rexlimdva 3212 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑚 ∈ ℕ (1
/ 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd
‘(𝑔‘𝑛)) < 𝑟)) |
52 | 18, 51 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑛 ∈ ℕ
(2nd ‘(𝑔‘𝑛)) < 𝑟) |
53 | 52 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑛 ∈ ℕ (2nd
‘(𝑔‘𝑛)) < 𝑟) |
54 | 5, 6, 14, 53 | caubl 24377 |
. . . 4
⊢ (𝜑 → (1st ∘
𝑔) ∈ (Cau‘𝐷)) |
55 | 7 | cmetcau 24358 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘
𝑔) ∈ (Cau‘𝐷)) → (1st
∘ 𝑔) ∈ dom
(⇝𝑡‘𝐽)) |
56 | 1, 54, 55 | syl2anc 583 |
. . 3
⊢ (𝜑 → (1st ∘
𝑔) ∈ dom
(⇝𝑡‘𝐽)) |
57 | | fo1st 7824 |
. . . . . 6
⊢
1st :V–onto→V |
58 | | fofun 6673 |
. . . . . 6
⊢
(1st :V–onto→V → Fun 1st ) |
59 | 57, 58 | ax-mp 5 |
. . . . 5
⊢ Fun
1st |
60 | | vex 3426 |
. . . . 5
⊢ 𝑔 ∈ V |
61 | | cofunexg 7765 |
. . . . 5
⊢ ((Fun
1st ∧ 𝑔
∈ V) → (1st ∘ 𝑔) ∈ V) |
62 | 59, 60, 61 | mp2an 688 |
. . . 4
⊢
(1st ∘ 𝑔) ∈ V |
63 | 62 | eldm 5798 |
. . 3
⊢
((1st ∘ 𝑔) ∈ dom
(⇝𝑡‘𝐽) ↔ ∃𝑥(1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥) |
64 | 56, 63 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑥(1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥) |
65 | | 1nn 11914 |
. . . . . 6
⊢ 1 ∈
ℕ |
66 | 7, 1, 8, 9, 10, 11, 6, 12, 13 | bcthlem3 24395 |
. . . . . 6
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 1 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1))) |
67 | 65, 66 | mp3an3 1448 |
. . . . 5
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1))) |
68 | 12 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = ((ball‘𝐷)‘〈𝐶, 𝑅〉)) |
69 | | df-ov 7258 |
. . . . . . 7
⊢ (𝐶(ball‘𝐷)𝑅) = ((ball‘𝐷)‘〈𝐶, 𝑅〉) |
70 | 68, 69 | eqtr4di 2797 |
. . . . . 6
⊢ (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅)) |
71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅)) |
72 | 67, 71 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ (𝐶(ball‘𝐷)𝑅)) |
73 | 7 | mopntop 23501 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
74 | 5, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
75 | 74 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐽 ∈ Top) |
76 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
77 | | xp1st 7836 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) →
(1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋) |
78 | 35, 77 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝑔‘(𝑚 + 1))) ∈ 𝑋) |
79 | 37 | rpxrd 12702 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝑔‘(𝑚 + 1))) ∈
ℝ*) |
80 | | blssm 23479 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑔‘(𝑚 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*) →
((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋) |
81 | 76, 78, 79, 80 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋) |
82 | | df-ov 7258 |
. . . . . . . . . . . . . 14
⊢
((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘〈(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))〉) |
83 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑚 + 1)) = 〈(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))〉) |
84 | 35, 83 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) = 〈(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))〉) |
85 | 84 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) = ((ball‘𝐷)‘〈(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))〉)) |
86 | 82, 85 | eqtr4id 2798 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) |
87 | 7 | mopnuni 23502 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
88 | 5, 87 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
89 | 88 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 = ∪ 𝐽) |
90 | 81, 86, 89 | 3sstr3d 3963 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ∪
𝐽) |
91 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
92 | 91 | sscls 22115 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧
((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ∪
𝐽) →
((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))) |
93 | 75, 90, 92 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))) |
94 | 32 | simp3d 1142 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))) |
95 | 93, 94 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))) |
96 | 95 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))) |
97 | 7, 1, 8, 9, 10, 11, 6, 12, 13 | bcthlem3 24395 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ (𝑚 + 1) ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) |
98 | 19, 97 | syl3an3 1163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝑚 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) |
99 | 96, 98 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝑚 ∈ ℕ) → 𝑥 ∈ (((ball‘𝐷)‘(𝑔‘𝑚)) ∖ (𝑀‘𝑚))) |
100 | 99 | eldifbd 3896 |
. . . . . . 7
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀‘𝑚)) |
101 | 100 | 3expa 1116 |
. . . . . 6
⊢ (((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀‘𝑚)) |
102 | 101 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀‘𝑚)) |
103 | | eluni2 4840 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ ran 𝑀 ↔ ∃𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦) |
104 | 9 | ffnd 6585 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 Fn ℕ) |
105 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑀‘𝑚) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑀‘𝑚))) |
106 | 105 | rexrn 6945 |
. . . . . . . . . 10
⊢ (𝑀 Fn ℕ → (∃𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀‘𝑚))) |
107 | 104, 106 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀‘𝑚))) |
108 | 103, 107 | syl5bb 282 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ∪ ran
𝑀 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀‘𝑚))) |
109 | 108 | notbid 317 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑥 ∈ ∪ ran
𝑀 ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀‘𝑚))) |
110 | | ralnex 3163 |
. . . . . . 7
⊢
(∀𝑚 ∈
ℕ ¬ 𝑥 ∈
(𝑀‘𝑚) ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀‘𝑚)) |
111 | 109, 110 | bitr4di 288 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑥 ∈ ∪ ran
𝑀 ↔ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀‘𝑚))) |
112 | 111 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀‘𝑚)) → ¬ 𝑥 ∈ ∪ ran
𝑀) |
113 | 102, 112 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → ¬ 𝑥 ∈ ∪ ran
𝑀) |
114 | 72, 113 | eldifd 3894 |
. . 3
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ∪ ran
𝑀)) |
115 | 114 | ne0d 4266 |
. 2
⊢ ((𝜑 ∧ (1st ∘
𝑔)(⇝𝑡‘𝐽)𝑥) → ((𝐶(ball‘𝐷)𝑅) ∖ ∪ ran
𝑀) ≠
∅) |
116 | 64, 115 | exlimddv 1939 |
1
⊢ (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ∪ ran
𝑀) ≠
∅) |