MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Structured version   Visualization version   GIF version

Theorem bcthlem4 25234
Description: Lemma for bcth 25236. Given any open ball (𝐶(ball‘𝐷)𝑅) as starting point (and in particular, a ball in int( ran 𝑀)), the limit point 𝑥 of the centers of the induced sequence of balls 𝑔 is outside ran 𝑀. Note that a set 𝐴 has empty interior iff every nonempty open set 𝑈 contains points outside 𝐴, i.e. (𝑈𝐴) ≠ ∅. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem4 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem4
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25193 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24229 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 bcthlem.9 . . . . 5 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
7 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
8 bcthlem.5 . . . . . 6 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
9 bcthlem.6 . . . . . 6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
10 bcthlem.7 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
11 bcthlem.8 . . . . . 6 (𝜑𝐶𝑋)
12 bcthlem.10 . . . . . 6 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
13 bcthlem.11 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 25232 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
15 elrp 12960 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
16 nnrecl 12447 . . . . . . . . 9 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1715, 16sylbi 217 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1817adantl 481 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
19 peano2nn 12205 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2019adantl 481 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
21 fvoveq1 7413 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1)))
22 id 22 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚𝑘 = 𝑚)
23 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑔𝑘) = (𝑔𝑚))
2422, 23oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑘𝐹(𝑔𝑘)) = (𝑚𝐹(𝑔𝑚)))
2521, 24eleq12d 2823 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚))))
2625rspccva 3590 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
2713, 26sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
286ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔𝑚) ∈ (𝑋 × ℝ+))
297, 1, 8bcthlem1 25231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔𝑚) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3029expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑔𝑚) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))))
3128, 30mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3227, 31mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))
3332simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3433adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3532simp1d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+))
36 xp2nd 8004 . . . . . . . . . . . . . 14 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3735, 36syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3837rpred 13002 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
3938adantlr 715 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
40 nnrecre 12235 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
4140adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
42 rpre 12967 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4342ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑟 ∈ ℝ)
44 lttr 11257 . . . . . . . . . . 11 (((2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4539, 41, 43, 44syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4634, 45mpand 695 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
47 2fveq3 6866 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (2nd ‘(𝑔𝑛)) = (2nd ‘(𝑔‘(𝑚 + 1))))
4847breq1d 5120 . . . . . . . . . 10 (𝑛 = (𝑚 + 1) → ((2nd ‘(𝑔𝑛)) < 𝑟 ↔ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4948rspcev 3591 . . . . . . . . 9 (((𝑚 + 1) ∈ ℕ ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5020, 46, 49syl6an 684 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5150rexlimdva 3135 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5218, 51mpd 15 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5352ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
545, 6, 14, 53caubl 25215 . . . 4 (𝜑 → (1st𝑔) ∈ (Cau‘𝐷))
557cmetcau 25196 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑔) ∈ (Cau‘𝐷)) → (1st𝑔) ∈ dom (⇝𝑡𝐽))
561, 54, 55syl2anc 584 . . 3 (𝜑 → (1st𝑔) ∈ dom (⇝𝑡𝐽))
57 fo1st 7991 . . . . . 6 1st :V–onto→V
58 fofun 6776 . . . . . 6 (1st :V–onto→V → Fun 1st )
5957, 58ax-mp 5 . . . . 5 Fun 1st
60 vex 3454 . . . . 5 𝑔 ∈ V
61 cofunexg 7930 . . . . 5 ((Fun 1st𝑔 ∈ V) → (1st𝑔) ∈ V)
6259, 60, 61mp2an 692 . . . 4 (1st𝑔) ∈ V
6362eldm 5867 . . 3 ((1st𝑔) ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
6456, 63sylib 218 . 2 (𝜑 → ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
65 1nn 12204 . . . . . 6 1 ∈ ℕ
667, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25233 . . . . . 6 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ 1 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6765, 66mp3an3 1452 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6812fveq2d 6865 . . . . . . 7 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩))
69 df-ov 7393 . . . . . . 7 (𝐶(ball‘𝐷)𝑅) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩)
7068, 69eqtr4di 2783 . . . . . 6 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7170adantr 480 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7267, 71eleqtrd 2831 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐶(ball‘𝐷)𝑅))
737mopntop 24335 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
745, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐽 ∈ Top)
765adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
77 xp1st 8003 . . . . . . . . . . . . . . 15 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7835, 77syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
7937rpxrd 13003 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*)
80 blssm 24313 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
8176, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
82 df-ov 7393 . . . . . . . . . . . . . 14 ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
83 1st2nd2 8010 . . . . . . . . . . . . . . . 16 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8435, 83syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8584fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩))
8682, 85eqtr4id 2784 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
877mopnuni 24336 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
885, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 = 𝐽)
8988adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑋 = 𝐽)
9081, 86, 893sstr3d 4004 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽)
91 eqid 2730 . . . . . . . . . . . . 13 𝐽 = 𝐽
9291sscls 22950 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9375, 90, 92syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9432simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
9593, 94sstrd 3960 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
96953adant2 1131 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
977, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 25233 . . . . . . . . . 10 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝑚 + 1) ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9819, 97syl3an3 1165 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
9996, 98sseldd 3950 . . . . . . . 8 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
10099eldifbd 3930 . . . . . . 7 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
1011003expa 1118 . . . . . 6 (((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
102101ralrimiva 3126 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚))
103 eluni2 4878 . . . . . . . . 9 (𝑥 ran 𝑀 ↔ ∃𝑦 ∈ ran 𝑀 𝑥𝑦)
1049ffnd 6692 . . . . . . . . . 10 (𝜑𝑀 Fn ℕ)
105 eleq2 2818 . . . . . . . . . . 11 (𝑦 = (𝑀𝑚) → (𝑥𝑦𝑥 ∈ (𝑀𝑚)))
106105rexrn 7062 . . . . . . . . . 10 (𝑀 Fn ℕ → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
107104, 106syl 17 . . . . . . . . 9 (𝜑 → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
108103, 107bitrid 283 . . . . . . . 8 (𝜑 → (𝑥 ran 𝑀 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
109108notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
110 ralnex 3056 . . . . . . 7 (∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚) ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚))
111109, 110bitr4di 289 . . . . . 6 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)))
112111biimpar 477 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)) → ¬ 𝑥 ran 𝑀)
113102, 112syldan 591 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ¬ 𝑥 ran 𝑀)
11472, 113eldifd 3928 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀))
115114ne0d 4308 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
11664, 115exlimddv 1935 1 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  wss 3917  c0 4299  cop 4598   cuni 4874   class class class wbr 5110  {copab 5172   × cxp 5639  dom cdm 5641  ran crn 5642  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215   / cdiv 11842  cn 12193  +crp 12958  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261  Topctop 22787  Clsdccld 22910  clsccl 22912  𝑡clm 23120  Cauccau 25160  CMetccmet 25161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lm 23123  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cfil 25162  df-cau 25163  df-cmet 25164
This theorem is referenced by:  bcthlem5  25235
  Copyright terms: Public domain W3C validator