MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Visualization version   GIF version

Theorem dmdprdsplit2lem 20066
Description: Lemma for dmdprdsplit 20068. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
dmdprdsplit2lem.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdsplit2lem ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))

Proof of Theorem dmdprdsplit2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6 (𝜑𝐼 = (𝐶𝐷))
21adantr 480 . . . . 5 ((𝜑𝑋𝐶) → 𝐼 = (𝐶𝐷))
32eleq2d 2826 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐼𝑌 ∈ (𝐶𝐷)))
4 elun 4152 . . . 4 (𝑌 ∈ (𝐶𝐷) ↔ (𝑌𝐶𝑌𝐷))
53, 4bitrdi 287 . . 3 ((𝜑𝑋𝐶) → (𝑌𝐼 ↔ (𝑌𝐶𝑌𝐷)))
6 dmdprdsplit2.1 . . . . . . . 8 (𝜑𝐺dom DProd (𝑆𝐶))
76ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
8 dprdsplit.2 . . . . . . . . . 10 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4177 . . . . . . . . . . 11 𝐶 ⊆ (𝐶𝐷)
109, 1sseqtrrid 4026 . . . . . . . . . 10 (𝜑𝐶𝐼)
118, 10fssresd 6774 . . . . . . . . 9 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6745 . . . . . . . 8 (𝜑 → dom (𝑆𝐶) = 𝐶)
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
14 simplr 768 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝐶)
15 simprl 770 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑌𝐶)
16 simprr 772 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝑌)
17 dmdprdsplit.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
187, 13, 14, 15, 16, 17dprdcntz 20029 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝑍‘((𝑆𝐶)‘𝑌)))
19 fvres 6924 . . . . . . 7 (𝑋𝐶 → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
2019ad2antlr 727 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
21 fvres 6924 . . . . . . . 8 (𝑌𝐶 → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2221ad2antrl 728 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2322fveq2d 6909 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑍‘((𝑆𝐶)‘𝑌)) = (𝑍‘(𝑆𝑌)))
2418, 20, 233sstr3d 4037 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
2524exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐶 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
2619ad2antlr 727 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
276ad2antrr 726 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
2812ad2antrr 726 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
29 simplr 768 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑋𝐶)
3027, 28, 29dprdub 20046 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
3126, 30eqsstrrd 4018 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
32 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
3332ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
34 eqid 2736 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
3534dprdssv 20037 . . . . . . . 8 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
36 fvres 6924 . . . . . . . . . 10 (𝑌𝐷 → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
3736ad2antrl 728 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
38 dmdprdsplit2.2 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐷))
3938ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐷))
40 ssun2 4178 . . . . . . . . . . . . . 14 𝐷 ⊆ (𝐶𝐷)
4140, 1sseqtrrid 4026 . . . . . . . . . . . . 13 (𝜑𝐷𝐼)
428, 41fssresd 6774 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4342fdmd 6745 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐷) = 𝐷)
4443ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐷) = 𝐷)
45 simprl 770 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
4639, 44, 45dprdub 20046 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4737, 46eqsstrrd 4018 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4834, 17cntz2ss 19354 . . . . . . . 8 (((𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷))) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
4935, 47, 48sylancr 587 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
5033, 49sstrd 3993 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝑆𝑌)))
5131, 50sstrd 3993 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
5251exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐷 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
5325, 52jaod 859 . . 3 ((𝜑𝑋𝐶) → ((𝑌𝐶𝑌𝐷) → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
545, 53sylbid 240 . 2 ((𝜑𝑋𝐶) → (𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
55 dprdgrp 20026 . . . . . . . 8 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
566, 55syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
5756adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → 𝐺 ∈ Grp)
5834subgacs 19180 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
59 acsmre 17696 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
6057, 58, 593syl 18 . . . . 5 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
61 difundir 4290 . . . . . . . . . . 11 ((𝐶𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))
622difeq1d 4124 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶𝐷) ∖ {𝑋}))
63 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑋𝐶) → 𝑋𝐶)
6463snssd 4808 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → {𝑋} ⊆ 𝐶)
65 sslin 4242 . . . . . . . . . . . . . . 15 ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
67 incom 4208 . . . . . . . . . . . . . . 15 (𝐶𝐷) = (𝐷𝐶)
68 dprdsplit.i . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝐷) = ∅)
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → (𝐶𝐷) = ∅)
7067, 69eqtr3id 2790 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷𝐶) = ∅)
71 sseq0 4402 . . . . . . . . . . . . . 14 (((𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶) ∧ (𝐷𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅)
7266, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) = ∅)
73 disj3 4453 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋}))
7472, 73sylib 218 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → 𝐷 = (𝐷 ∖ {𝑋}))
7574uneq2d 4167 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})))
7661, 62, 753eqtr4a 2802 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷))
7776imaeq2d 6077 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)))
78 imaundi 6168 . . . . . . . . 9 (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
7977, 78eqtrdi 2792 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
8079unieqd 4919 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
81 uniun 4929 . . . . . . 7 ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
8280, 81eqtrdi 2792 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
83 dmdprdsplit2lem.k . . . . . . . . 9 𝐾 = (mrCls‘(SubGrp‘𝐺))
84 difss 4135 . . . . . . . . . . 11 (𝐶 ∖ {𝑋}) ⊆ 𝐶
85 imass2 6119 . . . . . . . . . . 11 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
86 uniss 4914 . . . . . . . . . . 11 ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
8784, 85, 86mp2b 10 . . . . . . . . . 10 (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶)
88 imassrn 6088 . . . . . . . . . . . 12 (𝑆𝐶) ⊆ ran 𝑆
898frnd 6743 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺))
91 mresspw 17636 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9260, 91syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9390, 92sstrd 3993 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
9488, 93sstrid 3994 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ 𝒫 (Base‘𝐺))
95 sspwuni 5099 . . . . . . . . . . 11 ((𝑆𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐶) ⊆ (Base‘𝐺))
9694, 95sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ (Base‘𝐺))
9787, 96sstrid 3994 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺))
9860, 83, 97mrcssidd 17669 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
99 imassrn 6088 . . . . . . . . . . . 12 (𝑆𝐷) ⊆ ran 𝑆
10099, 93sstrid 3994 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ 𝒫 (Base‘𝐺))
101 sspwuni 5099 . . . . . . . . . . 11 ((𝑆𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐷) ⊆ (Base‘𝐺))
102100, 101sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (Base‘𝐺))
10360, 83, 102mrcssidd 17669 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐾 (𝑆𝐷)))
10483dprdspan 20048 . . . . . . . . . . . 12 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
10538, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
106 df-ima 5697 . . . . . . . . . . . . 13 (𝑆𝐷) = ran (𝑆𝐷)
107106unieqi 4918 . . . . . . . . . . . 12 (𝑆𝐷) = ran (𝑆𝐷)
108107fveq2i 6908 . . . . . . . . . . 11 (𝐾 (𝑆𝐷)) = (𝐾 ran (𝑆𝐷))
109105, 108eqtr4di 2794 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
110109adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
111103, 110sseqtrrd 4020 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷)))
112 unss12 4187 . . . . . . . 8 (( (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷))) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11398, 111, 112syl2anc 584 . . . . . . 7 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11483mrccl 17655 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
11560, 97, 114syl2anc 584 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
116 dprdsubg 20045 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
11738, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
118117adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
119 eqid 2736 . . . . . . . . 9 (LSSum‘𝐺) = (LSSum‘𝐺)
120119lsmunss 19678 . . . . . . . 8 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
121115, 118, 120syl2anc 584 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
122113, 121sstrd 3993 . . . . . 6 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12382, 122eqsstrd 4017 . . . . 5 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12487a1i 11 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
12560, 83, 124, 96mrcssd 17668 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾 (𝑆𝐶)))
12683dprdspan 20048 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
1276, 126syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
128 df-ima 5697 . . . . . . . . . . . 12 (𝑆𝐶) = ran (𝑆𝐶)
129128unieqi 4918 . . . . . . . . . . 11 (𝑆𝐶) = ran (𝑆𝐶)
130129fveq2i 6908 . . . . . . . . . 10 (𝐾 (𝑆𝐶)) = (𝐾 ran (𝑆𝐶))
131127, 130eqtr4di 2794 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
132131adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
133125, 132sseqtrrd 4020 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶)))
13432adantr 480 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
135133, 134sstrd 3993 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
136119, 17lsmsubg 19673 . . . . . 6 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷)))) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
137115, 118, 135, 136syl3anc 1372 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
13883mrcsscl 17664 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∧ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
13960, 123, 137, 138syl3anc 1372 . . . 4 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
140 sslin 4242 . . . 4 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
141139, 140syl 17 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
14210sselda 3982 . . . . 5 ((𝜑𝑋𝐶) → 𝑋𝐼)
1438ffvelcdmda 7103 . . . . 5 ((𝜑𝑋𝐼) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
144142, 143syldan 591 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
145 dmdprdsplit.0 . . . 4 0 = (0g𝐺)
14619adantl 481 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
1476adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → 𝐺dom DProd (𝑆𝐶))
14812adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → dom (𝑆𝐶) = 𝐶)
149147, 148, 63dprdub 20046 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
150146, 149eqsstrrd 4018 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
151 dprdsubg 20045 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
1526, 151syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
153152adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
154119lsmlub 19683 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
155144, 115, 153, 154syl3anc 1372 . . . . . . . 8 ((𝜑𝑋𝐶) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
156150, 133, 155mpbi2and 712 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶)))
157156ssrind 4243 . . . . . 6 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
158 dmdprdsplit2.4 . . . . . . 7 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
159158adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
160157, 159sseqtrd 4019 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
161119lsmub1 19676 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
162144, 115, 161syl2anc 584 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
163145subg0cl 19153 . . . . . . . . 9 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑋))
164144, 163syl 17 . . . . . . . 8 ((𝜑𝑋𝐶) → 0 ∈ (𝑆𝑋))
165162, 164sseldd 3983 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
166145subg0cl 19153 . . . . . . . 8 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
167118, 166syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
168165, 167elind 4199 . . . . . 6 ((𝜑𝑋𝐶) → 0 ∈ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
169168snssd 4808 . . . . 5 ((𝜑𝑋𝐶) → { 0 } ⊆ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
170160, 169eqssd 4000 . . . 4 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
171 resima2 6033 . . . . . . . . 9 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
17284, 171mp1i 13 . . . . . . . 8 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
173172unieqd 4919 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
174173fveq2d 6909 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
175146, 174ineq12d 4220 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
176147, 148, 63, 145, 83dprddisj 20030 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 })
177175, 176eqtr3d 2778 . . . 4 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 })
1788adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺))
179 ffun 6738 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
180 funiunfv 7269 . . . . . . . 8 (Fun 𝑆 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
181178, 179, 1803syl 18 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
1826ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆𝐶))
18312ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆𝐶) = 𝐶)
184 eldifi 4130 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝐶)
185184adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝐶)
186 simplr 768 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋𝐶)
187 eldifsni 4789 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝑋)
188187adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝑋)
189182, 183, 185, 186, 188, 17dprdcntz 20029 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) ⊆ (𝑍‘((𝑆𝐶)‘𝑋)))
190185fvresd 6925 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) = (𝑆𝑦))
19119ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
192191fveq2d 6909 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆𝐶)‘𝑋)) = (𝑍‘(𝑆𝑋)))
193189, 190, 1923sstr3d 4037 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
194193ralrimiva 3145 . . . . . . . 8 ((𝜑𝑋𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
195 iunss 5044 . . . . . . . 8 ( 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
196194, 195sylibr 234 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
197181, 196eqsstrrd 4018 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)))
19834subgss 19146 . . . . . . . 8 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → (𝑆𝑋) ⊆ (Base‘𝐺))
199144, 198syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (Base‘𝐺))
20034, 17cntzsubg 19358 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20157, 199, 200syl2anc 584 . . . . . 6 ((𝜑𝑋𝐶) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20283mrcsscl 17664 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)) ∧ (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20360, 197, 201, 202syl3anc 1372 . . . . 5 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20417, 115, 144, 203cntzrecd 19697 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝑍‘(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
205119, 144, 115, 118, 145, 170, 177, 17, 204lsmdisj3 19702 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))) = { 0 })
206141, 205sseqtrd 4019 . 2 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })
20754, 206jca 511 1 ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  wral 3060  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   ciun 4990   class class class wbr 5142  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  Basecbs 17248  0gc0g 17485  Moorecmre 17626  mrClscmrc 17627  ACScacs 17629  Grpcgrp 18952  SubGrpcsubg 19139  Cntzccntz 19334  LSSumclsm 19653   DProd cdprd 20014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-gim 19278  df-cntz 19336  df-oppg 19365  df-lsm 19655  df-cmn 19801  df-dprd 20016
This theorem is referenced by:  dmdprdsplit2  20067
  Copyright terms: Public domain W3C validator