MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Visualization version   GIF version

Theorem dmdprdsplit2lem 20089
Description: Lemma for dmdprdsplit 20091. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
dmdprdsplit2lem.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdsplit2lem ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))

Proof of Theorem dmdprdsplit2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6 (𝜑𝐼 = (𝐶𝐷))
21adantr 480 . . . . 5 ((𝜑𝑋𝐶) → 𝐼 = (𝐶𝐷))
32eleq2d 2830 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐼𝑌 ∈ (𝐶𝐷)))
4 elun 4176 . . . 4 (𝑌 ∈ (𝐶𝐷) ↔ (𝑌𝐶𝑌𝐷))
53, 4bitrdi 287 . . 3 ((𝜑𝑋𝐶) → (𝑌𝐼 ↔ (𝑌𝐶𝑌𝐷)))
6 dmdprdsplit2.1 . . . . . . . 8 (𝜑𝐺dom DProd (𝑆𝐶))
76ad2antrr 725 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
8 dprdsplit.2 . . . . . . . . . 10 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4201 . . . . . . . . . . 11 𝐶 ⊆ (𝐶𝐷)
109, 1sseqtrrid 4062 . . . . . . . . . 10 (𝜑𝐶𝐼)
118, 10fssresd 6788 . . . . . . . . 9 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6757 . . . . . . . 8 (𝜑 → dom (𝑆𝐶) = 𝐶)
1312ad2antrr 725 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
14 simplr 768 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝐶)
15 simprl 770 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑌𝐶)
16 simprr 772 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝑌)
17 dmdprdsplit.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
187, 13, 14, 15, 16, 17dprdcntz 20052 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝑍‘((𝑆𝐶)‘𝑌)))
19 fvres 6939 . . . . . . 7 (𝑋𝐶 → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
2019ad2antlr 726 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
21 fvres 6939 . . . . . . . 8 (𝑌𝐶 → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2221ad2antrl 727 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2322fveq2d 6924 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑍‘((𝑆𝐶)‘𝑌)) = (𝑍‘(𝑆𝑌)))
2418, 20, 233sstr3d 4055 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
2524exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐶 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
2619ad2antlr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
276ad2antrr 725 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
2812ad2antrr 725 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
29 simplr 768 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑋𝐶)
3027, 28, 29dprdub 20069 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
3126, 30eqsstrrd 4048 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
32 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
3332ad2antrr 725 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
34 eqid 2740 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
3534dprdssv 20060 . . . . . . . 8 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
36 fvres 6939 . . . . . . . . . 10 (𝑌𝐷 → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
3736ad2antrl 727 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
38 dmdprdsplit2.2 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐷))
3938ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐷))
40 ssun2 4202 . . . . . . . . . . . . . 14 𝐷 ⊆ (𝐶𝐷)
4140, 1sseqtrrid 4062 . . . . . . . . . . . . 13 (𝜑𝐷𝐼)
428, 41fssresd 6788 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4342fdmd 6757 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐷) = 𝐷)
4443ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐷) = 𝐷)
45 simprl 770 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
4639, 44, 45dprdub 20069 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4737, 46eqsstrrd 4048 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4834, 17cntz2ss 19375 . . . . . . . 8 (((𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷))) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
4935, 47, 48sylancr 586 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
5033, 49sstrd 4019 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝑆𝑌)))
5131, 50sstrd 4019 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
5251exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐷 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
5325, 52jaod 858 . . 3 ((𝜑𝑋𝐶) → ((𝑌𝐶𝑌𝐷) → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
545, 53sylbid 240 . 2 ((𝜑𝑋𝐶) → (𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
55 dprdgrp 20049 . . . . . . . 8 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
566, 55syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
5756adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → 𝐺 ∈ Grp)
5834subgacs 19201 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
59 acsmre 17710 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
6057, 58, 593syl 18 . . . . 5 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
61 difundir 4310 . . . . . . . . . . 11 ((𝐶𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))
622difeq1d 4148 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶𝐷) ∖ {𝑋}))
63 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑋𝐶) → 𝑋𝐶)
6463snssd 4834 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → {𝑋} ⊆ 𝐶)
65 sslin 4264 . . . . . . . . . . . . . . 15 ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
67 incom 4230 . . . . . . . . . . . . . . 15 (𝐶𝐷) = (𝐷𝐶)
68 dprdsplit.i . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝐷) = ∅)
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → (𝐶𝐷) = ∅)
7067, 69eqtr3id 2794 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷𝐶) = ∅)
71 sseq0 4426 . . . . . . . . . . . . . 14 (((𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶) ∧ (𝐷𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅)
7266, 70, 71syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) = ∅)
73 disj3 4477 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋}))
7472, 73sylib 218 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → 𝐷 = (𝐷 ∖ {𝑋}))
7574uneq2d 4191 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})))
7661, 62, 753eqtr4a 2806 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷))
7776imaeq2d 6089 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)))
78 imaundi 6181 . . . . . . . . 9 (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
7977, 78eqtrdi 2796 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
8079unieqd 4944 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
81 uniun 4954 . . . . . . 7 ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
8280, 81eqtrdi 2796 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
83 dmdprdsplit2lem.k . . . . . . . . 9 𝐾 = (mrCls‘(SubGrp‘𝐺))
84 difss 4159 . . . . . . . . . . 11 (𝐶 ∖ {𝑋}) ⊆ 𝐶
85 imass2 6132 . . . . . . . . . . 11 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
86 uniss 4939 . . . . . . . . . . 11 ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
8784, 85, 86mp2b 10 . . . . . . . . . 10 (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶)
88 imassrn 6100 . . . . . . . . . . . 12 (𝑆𝐶) ⊆ ran 𝑆
898frnd 6755 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺))
91 mresspw 17650 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9260, 91syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9390, 92sstrd 4019 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
9488, 93sstrid 4020 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ 𝒫 (Base‘𝐺))
95 sspwuni 5123 . . . . . . . . . . 11 ((𝑆𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐶) ⊆ (Base‘𝐺))
9694, 95sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ (Base‘𝐺))
9787, 96sstrid 4020 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺))
9860, 83, 97mrcssidd 17683 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
99 imassrn 6100 . . . . . . . . . . . 12 (𝑆𝐷) ⊆ ran 𝑆
10099, 93sstrid 4020 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ 𝒫 (Base‘𝐺))
101 sspwuni 5123 . . . . . . . . . . 11 ((𝑆𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐷) ⊆ (Base‘𝐺))
102100, 101sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (Base‘𝐺))
10360, 83, 102mrcssidd 17683 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐾 (𝑆𝐷)))
10483dprdspan 20071 . . . . . . . . . . . 12 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
10538, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
106 df-ima 5713 . . . . . . . . . . . . 13 (𝑆𝐷) = ran (𝑆𝐷)
107106unieqi 4943 . . . . . . . . . . . 12 (𝑆𝐷) = ran (𝑆𝐷)
108107fveq2i 6923 . . . . . . . . . . 11 (𝐾 (𝑆𝐷)) = (𝐾 ran (𝑆𝐷))
109105, 108eqtr4di 2798 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
110109adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
111103, 110sseqtrrd 4050 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷)))
112 unss12 4211 . . . . . . . 8 (( (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷))) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11398, 111, 112syl2anc 583 . . . . . . 7 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11483mrccl 17669 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
11560, 97, 114syl2anc 583 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
116 dprdsubg 20068 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
11738, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
118117adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
119 eqid 2740 . . . . . . . . 9 (LSSum‘𝐺) = (LSSum‘𝐺)
120119lsmunss 19701 . . . . . . . 8 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
121115, 118, 120syl2anc 583 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
122113, 121sstrd 4019 . . . . . 6 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12382, 122eqsstrd 4047 . . . . 5 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12487a1i 11 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
12560, 83, 124, 96mrcssd 17682 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾 (𝑆𝐶)))
12683dprdspan 20071 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
1276, 126syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
128 df-ima 5713 . . . . . . . . . . . 12 (𝑆𝐶) = ran (𝑆𝐶)
129128unieqi 4943 . . . . . . . . . . 11 (𝑆𝐶) = ran (𝑆𝐶)
130129fveq2i 6923 . . . . . . . . . 10 (𝐾 (𝑆𝐶)) = (𝐾 ran (𝑆𝐶))
131127, 130eqtr4di 2798 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
132131adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
133125, 132sseqtrrd 4050 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶)))
13432adantr 480 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
135133, 134sstrd 4019 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
136119, 17lsmsubg 19696 . . . . . 6 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷)))) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
137115, 118, 135, 136syl3anc 1371 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
13883mrcsscl 17678 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∧ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
13960, 123, 137, 138syl3anc 1371 . . . 4 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
140 sslin 4264 . . . 4 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
141139, 140syl 17 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
14210sselda 4008 . . . . 5 ((𝜑𝑋𝐶) → 𝑋𝐼)
1438ffvelcdmda 7118 . . . . 5 ((𝜑𝑋𝐼) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
144142, 143syldan 590 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
145 dmdprdsplit.0 . . . 4 0 = (0g𝐺)
14619adantl 481 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
1476adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → 𝐺dom DProd (𝑆𝐶))
14812adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → dom (𝑆𝐶) = 𝐶)
149147, 148, 63dprdub 20069 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
150146, 149eqsstrrd 4048 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
151 dprdsubg 20068 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
1526, 151syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
153152adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
154119lsmlub 19706 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
155144, 115, 153, 154syl3anc 1371 . . . . . . . 8 ((𝜑𝑋𝐶) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
156150, 133, 155mpbi2and 711 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶)))
157156ssrind 4265 . . . . . 6 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
158 dmdprdsplit2.4 . . . . . . 7 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
159158adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
160157, 159sseqtrd 4049 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
161119lsmub1 19699 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
162144, 115, 161syl2anc 583 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
163145subg0cl 19174 . . . . . . . . 9 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑋))
164144, 163syl 17 . . . . . . . 8 ((𝜑𝑋𝐶) → 0 ∈ (𝑆𝑋))
165162, 164sseldd 4009 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
166145subg0cl 19174 . . . . . . . 8 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
167118, 166syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
168165, 167elind 4223 . . . . . 6 ((𝜑𝑋𝐶) → 0 ∈ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
169168snssd 4834 . . . . 5 ((𝜑𝑋𝐶) → { 0 } ⊆ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
170160, 169eqssd 4026 . . . 4 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
171 resima2 6045 . . . . . . . . 9 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
17284, 171mp1i 13 . . . . . . . 8 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
173172unieqd 4944 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
174173fveq2d 6924 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
175146, 174ineq12d 4242 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
176147, 148, 63, 145, 83dprddisj 20053 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 })
177175, 176eqtr3d 2782 . . . 4 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 })
1788adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺))
179 ffun 6750 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
180 funiunfv 7285 . . . . . . . 8 (Fun 𝑆 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
181178, 179, 1803syl 18 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
1826ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆𝐶))
18312ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆𝐶) = 𝐶)
184 eldifi 4154 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝐶)
185184adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝐶)
186 simplr 768 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋𝐶)
187 eldifsni 4815 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝑋)
188187adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝑋)
189182, 183, 185, 186, 188, 17dprdcntz 20052 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) ⊆ (𝑍‘((𝑆𝐶)‘𝑋)))
190185fvresd 6940 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) = (𝑆𝑦))
19119ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
192191fveq2d 6924 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆𝐶)‘𝑋)) = (𝑍‘(𝑆𝑋)))
193189, 190, 1923sstr3d 4055 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
194193ralrimiva 3152 . . . . . . . 8 ((𝜑𝑋𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
195 iunss 5068 . . . . . . . 8 ( 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
196194, 195sylibr 234 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
197181, 196eqsstrrd 4048 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)))
19834subgss 19167 . . . . . . . 8 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → (𝑆𝑋) ⊆ (Base‘𝐺))
199144, 198syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (Base‘𝐺))
20034, 17cntzsubg 19379 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20157, 199, 200syl2anc 583 . . . . . 6 ((𝜑𝑋𝐶) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20283mrcsscl 17678 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)) ∧ (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20360, 197, 201, 202syl3anc 1371 . . . . 5 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20417, 115, 144, 203cntzrecd 19720 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝑍‘(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
205119, 144, 115, 118, 145, 170, 177, 17, 204lsmdisj3 19725 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))) = { 0 })
206141, 205sseqtrd 4049 . 2 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })
20754, 206jca 511 1 ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499  Moorecmre 17640  mrClscmrc 17641  ACScacs 17643  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355  LSSumclsm 19676   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-dprd 20039
This theorem is referenced by:  dmdprdsplit2  20090
  Copyright terms: Public domain W3C validator