Step | Hyp | Ref
| Expression |
1 | | dprdsplit.u |
. . . . . 6
⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐼 = (𝐶 ∪ 𝐷)) |
3 | 2 | eleq2d 2824 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 ↔ 𝑌 ∈ (𝐶 ∪ 𝐷))) |
4 | | elun 4083 |
. . . 4
⊢ (𝑌 ∈ (𝐶 ∪ 𝐷) ↔ (𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷)) |
5 | 3, 4 | bitrdi 287 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 ↔ (𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷))) |
6 | | dmdprdsplit2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
7 | 6 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
8 | | dprdsplit.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
9 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
10 | 9, 1 | sseqtrrid 3974 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
11 | 8, 10 | fssresd 6641 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
12 | 11 | fdmd 6611 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
13 | 12 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐶) = 𝐶) |
14 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝐶) |
15 | | simprl 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ 𝐶) |
16 | | simprr 770 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ≠ 𝑌) |
17 | | dmdprdsplit.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
18 | 7, 13, 14, 15, 16, 17 | dprdcntz 19611 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝑍‘((𝑆 ↾ 𝐶)‘𝑌))) |
19 | | fvres 6793 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
20 | 19 | ad2antlr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
21 | | fvres 6793 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑌) = (𝑆‘𝑌)) |
22 | 21 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑌) = (𝑆‘𝑌)) |
23 | 22 | fveq2d 6778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → (𝑍‘((𝑆 ↾ 𝐶)‘𝑌)) = (𝑍‘(𝑆‘𝑌))) |
24 | 18, 20, 23 | 3sstr3d 3967 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |
25 | 24 | exp32 421 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐶 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
26 | 19 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
27 | 6 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
28 | 12 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐶) = 𝐶) |
29 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝐶) |
30 | 27, 28, 29 | dprdub 19628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
31 | 26, 30 | eqsstrrd 3960 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
32 | | dmdprdsplit2.3 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
33 | 32 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
34 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
35 | 34 | dprdssv 19619 |
. . . . . . . 8
⊢ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺) |
36 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝐷 → ((𝑆 ↾ 𝐷)‘𝑌) = (𝑆‘𝑌)) |
37 | 36 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐷)‘𝑌) = (𝑆‘𝑌)) |
38 | | dmdprdsplit2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
39 | 38 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
40 | | ssun2 4107 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
41 | 40, 1 | sseqtrrid 3974 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
42 | 8, 41 | fssresd 6641 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
43 | 42 | fdmd 6611 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
44 | 43 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐷) = 𝐷) |
45 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ 𝐷) |
46 | 39, 44, 45 | dprdub 19628 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
47 | 37, 46 | eqsstrrd 3960 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
48 | 34, 17 | cntz2ss 18939 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝑍‘(𝑆‘𝑌))) |
49 | 35, 47, 48 | sylancr 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝑍‘(𝑆‘𝑌))) |
50 | 33, 49 | sstrd 3931 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝑆‘𝑌))) |
51 | 31, 50 | sstrd 3931 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |
52 | 51 | exp32 421 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐷 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
53 | 25, 52 | jaod 856 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷) → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
54 | 5, 53 | sylbid 239 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
55 | | dprdgrp 19608 |
. . . . . . . 8
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) |
56 | 6, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
57 | 56 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐺 ∈ Grp) |
58 | 34 | subgacs 18789 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
59 | | acsmre 17361 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
60 | 57, 58, 59 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
61 | | difundir 4214 |
. . . . . . . . . . 11
⊢ ((𝐶 ∪ 𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})) |
62 | 2 | difeq1d 4056 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∪ 𝐷) ∖ {𝑋})) |
63 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
64 | 63 | snssd 4742 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {𝑋} ⊆ 𝐶) |
65 | | sslin 4168 |
. . . . . . . . . . . . . . 15
⊢ ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶)) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶)) |
67 | | incom 4135 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) |
68 | | dprdsplit.i |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐶 ∩ 𝐷) = ∅) |
70 | 67, 69 | eqtr3id 2792 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ 𝐶) = ∅) |
71 | | sseq0 4333 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶) ∧ (𝐷 ∩ 𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅) |
72 | 66, 70, 71 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ {𝑋}) = ∅) |
73 | | disj3 4387 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋})) |
74 | 72, 73 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐷 = (𝐷 ∖ {𝑋})) |
75 | 74 | uneq2d 4097 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))) |
76 | 61, 62, 75 | 3eqtr4a 2804 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷)) |
77 | 76 | imaeq2d 5969 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷))) |
78 | | imaundi 6053 |
. . . . . . . . 9
⊢ (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷)) |
79 | 77, 78 | eqtrdi 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷))) |
80 | 79 | unieqd 4853 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) = ∪ ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷))) |
81 | | uniun 4864 |
. . . . . . 7
⊢ ∪ ((𝑆
“ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷)) = (∪ (𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) |
82 | 80, 81 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) = (∪ (𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷))) |
83 | | dmdprdsplit2lem.k |
. . . . . . . . 9
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
84 | | difss 4066 |
. . . . . . . . . . 11
⊢ (𝐶 ∖ {𝑋}) ⊆ 𝐶 |
85 | | imass2 6010 |
. . . . . . . . . . 11
⊢ ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆 “ 𝐶)) |
86 | | uniss 4847 |
. . . . . . . . . . 11
⊢ ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆 “ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ ∪
(𝑆 “ 𝐶)) |
87 | 84, 85, 86 | mp2b 10 |
. . . . . . . . . 10
⊢ ∪ (𝑆
“ (𝐶 ∖ {𝑋})) ⊆ ∪ (𝑆
“ 𝐶) |
88 | | imassrn 5980 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐶) ⊆ ran 𝑆 |
89 | 8 | frnd 6608 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
90 | 89 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
91 | | mresspw 17301 |
. . . . . . . . . . . . . 14
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
92 | 60, 91 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
93 | 90, 92 | sstrd 3931 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺)) |
94 | 88, 93 | sstrid 3932 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ 𝐶) ⊆ 𝒫 (Base‘𝐺)) |
95 | | sspwuni 5029 |
. . . . . . . . . . 11
⊢ ((𝑆 “ 𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ 𝐶) ⊆
(Base‘𝐺)) |
96 | 94, 95 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐶) ⊆ (Base‘𝐺)) |
97 | 87, 96 | sstrid 3932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) |
98 | 60, 83, 97 | mrcssidd 17334 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) |
99 | | imassrn 5980 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐷) ⊆ ran 𝑆 |
100 | 99, 93 | sstrid 3932 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ 𝐷) ⊆ 𝒫 (Base‘𝐺)) |
101 | | sspwuni 5029 |
. . . . . . . . . . 11
⊢ ((𝑆 “ 𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ 𝐷) ⊆
(Base‘𝐺)) |
102 | 100, 101 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (Base‘𝐺)) |
103 | 60, 83, 102 | mrcssidd 17334 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (𝐾‘∪ (𝑆 “ 𝐷))) |
104 | 83 | dprdspan 19630 |
. . . . . . . . . . . 12
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐷))) |
105 | 38, 104 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐷))) |
106 | | df-ima 5602 |
. . . . . . . . . . . . 13
⊢ (𝑆 “ 𝐷) = ran (𝑆 ↾ 𝐷) |
107 | 106 | unieqi 4852 |
. . . . . . . . . . . 12
⊢ ∪ (𝑆
“ 𝐷) = ∪ ran (𝑆 ↾ 𝐷) |
108 | 107 | fveq2i 6777 |
. . . . . . . . . . 11
⊢ (𝐾‘∪ (𝑆
“ 𝐷)) = (𝐾‘∪ ran (𝑆 ↾ 𝐷)) |
109 | 105, 108 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ (𝑆 “ 𝐷))) |
110 | 109 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ (𝑆 “ 𝐷))) |
111 | 103, 110 | sseqtrrd 3962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
112 | | unss12 4116 |
. . . . . . . 8
⊢ ((∪ (𝑆
“ (𝐶 ∖ {𝑋})) ⊆ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ ∪
(𝑆 “ 𝐷) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
113 | 98, 111, 112 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
114 | 83 | mrccl 17320 |
. . . . . . . . 9
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
115 | 60, 97, 114 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
116 | | dprdsubg 19627 |
. . . . . . . . . 10
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
117 | 38, 116 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
118 | 117 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
119 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
120 | 119 | lsmunss 19264 |
. . . . . . . 8
⊢ (((𝐾‘∪ (𝑆
“ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
121 | 115, 118,
120 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
122 | 113, 121 | sstrd 3931 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
123 | 82, 122 | eqsstrd 3959 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
124 | 87 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ ∪
(𝑆 “ 𝐶)) |
125 | 60, 83, 124, 96 | mrcssd 17333 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾‘∪ (𝑆 “ 𝐶))) |
126 | 83 | dprdspan 19630 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐶))) |
127 | 6, 126 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐶))) |
128 | | df-ima 5602 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐶) = ran (𝑆 ↾ 𝐶) |
129 | 128 | unieqi 4852 |
. . . . . . . . . . 11
⊢ ∪ (𝑆
“ 𝐶) = ∪ ran (𝑆 ↾ 𝐶) |
130 | 129 | fveq2i 6777 |
. . . . . . . . . 10
⊢ (𝐾‘∪ (𝑆
“ 𝐶)) = (𝐾‘∪ ran (𝑆 ↾ 𝐶)) |
131 | 127, 130 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ (𝑆 “ 𝐶))) |
132 | 131 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ (𝑆 “ 𝐶))) |
133 | 125, 132 | sseqtrrd 3962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
134 | 32 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
135 | 133, 134 | sstrd 3931 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
136 | 119, 17 | lsmsubg 19259 |
. . . . . 6
⊢ (((𝐾‘∪ (𝑆
“ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
137 | 115, 118,
135, 136 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
138 | 83 | mrcsscl 17329 |
. . . . 5
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
139 | 60, 123, 137, 138 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
140 | | sslin 4168 |
. . . 4
⊢ ((𝐾‘∪ (𝑆
“ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))))) |
141 | 139, 140 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))))) |
142 | 10 | sselda 3921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐼) |
143 | 8 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
144 | 142, 143 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
145 | | dmdprdsplit.0 |
. . . 4
⊢ 0 =
(0g‘𝐺) |
146 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
147 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
148 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → dom (𝑆 ↾ 𝐶) = 𝐶) |
149 | 147, 148,
63 | dprdub 19628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
150 | 146, 149 | eqsstrrd 3960 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
151 | | dprdsubg 19627 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
152 | 6, 151 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
153 | 152 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
154 | 119 | lsmlub 19270 |
. . . . . . . . 9
⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) ↔ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)))) |
155 | 144, 115,
153, 154 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) ↔ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)))) |
156 | 150, 133,
155 | mpbi2and 709 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
157 | 156 | ssrind 4169 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
158 | | dmdprdsplit2.4 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
159 | 158 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
160 | 157, 159 | sseqtrd 3961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ { 0 }) |
161 | 119 | lsmub1 19262 |
. . . . . . . . 9
⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆‘𝑋) ⊆ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
162 | 144, 115,
161 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
163 | 145 | subg0cl 18763 |
. . . . . . . . 9
⊢ ((𝑆‘𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑋)) |
164 | 144, 163 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (𝑆‘𝑋)) |
165 | 162, 164 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
166 | 145 | subg0cl 18763 |
. . . . . . . 8
⊢ ((𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
167 | 118, 166 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
168 | 165, 167 | elind 4128 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
169 | 168 | snssd 4742 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → { 0 } ⊆ (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
170 | 160, 169 | eqssd 3938 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
171 | | resima2 5926 |
. . . . . . . . 9
⊢ ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋}))) |
172 | 84, 171 | mp1i 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋}))) |
173 | 172 | unieqd 4853 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
174 | 173 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) |
175 | 146, 174 | ineq12d 4147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆 ↾ 𝐶)‘𝑋) ∩ (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
176 | 147, 148,
63, 145, 83 | dprddisj 19612 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆 ↾ 𝐶)‘𝑋) ∩ (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 }) |
177 | 175, 176 | eqtr3d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 }) |
178 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
179 | | ffun 6603 |
. . . . . . . 8
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆) |
180 | | funiunfv 7121 |
. . . . . . . 8
⊢ (Fun
𝑆 → ∪ 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
181 | 178, 179,
180 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
182 | 6 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
183 | 12 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆 ↾ 𝐶) = 𝐶) |
184 | | eldifi 4061 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦 ∈ 𝐶) |
185 | 184 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦 ∈ 𝐶) |
186 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋 ∈ 𝐶) |
187 | | eldifsni 4723 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦 ≠ 𝑋) |
188 | 187 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
189 | 182, 183,
185, 186, 188, 17 | dprdcntz 19611 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑦) ⊆ (𝑍‘((𝑆 ↾ 𝐶)‘𝑋))) |
190 | 185 | fvresd 6794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑦) = (𝑆‘𝑦)) |
191 | 19 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
192 | 191 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆 ↾ 𝐶)‘𝑋)) = (𝑍‘(𝑆‘𝑋))) |
193 | 189, 190,
192 | 3sstr3d 3967 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
194 | 193 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
195 | | iunss 4975 |
. . . . . . . 8
⊢ (∪ 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
196 | 194, 195 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
197 | 181, 196 | eqsstrrd 3960 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆‘𝑋))) |
198 | 34 | subgss 18756 |
. . . . . . . 8
⊢ ((𝑆‘𝑋) ∈ (SubGrp‘𝐺) → (𝑆‘𝑋) ⊆ (Base‘𝐺)) |
199 | 144, 198 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (Base‘𝐺)) |
200 | 34, 17 | cntzsubg 18943 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑆‘𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) |
201 | 57, 199, 200 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) |
202 | 83 | mrcsscl 17329 |
. . . . . 6
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆‘𝑋)) ∧ (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆‘𝑋))) |
203 | 60, 197, 201, 202 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆‘𝑋))) |
204 | 17, 115, 144, 203 | cntzrecd 19284 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (𝑍‘(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
205 | 119, 144,
115, 118, 145, 170, 177, 17, 204 | lsmdisj3 19289 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) = { 0 }) |
206 | 141, 205 | sseqtrd 3961 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }) |
207 | 54, 206 | jca 512 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) |