MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Visualization version   GIF version

Theorem dmdprdsplit2lem 18920
Description: Lemma for dmdprdsplit 18922. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
dmdprdsplit2lem.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdsplit2lem ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))

Proof of Theorem dmdprdsplit2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6 (𝜑𝐼 = (𝐶𝐷))
21adantr 473 . . . . 5 ((𝜑𝑋𝐶) → 𝐼 = (𝐶𝐷))
32eleq2d 2851 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐼𝑌 ∈ (𝐶𝐷)))
4 elun 4016 . . . 4 (𝑌 ∈ (𝐶𝐷) ↔ (𝑌𝐶𝑌𝐷))
53, 4syl6bb 279 . . 3 ((𝜑𝑋𝐶) → (𝑌𝐼 ↔ (𝑌𝐶𝑌𝐷)))
6 dmdprdsplit2.1 . . . . . . . 8 (𝜑𝐺dom DProd (𝑆𝐶))
76ad2antrr 713 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
8 dprdsplit.2 . . . . . . . . . 10 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4039 . . . . . . . . . . 11 𝐶 ⊆ (𝐶𝐷)
109, 1syl5sseqr 3912 . . . . . . . . . 10 (𝜑𝐶𝐼)
118, 10fssresd 6376 . . . . . . . . 9 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6355 . . . . . . . 8 (𝜑 → dom (𝑆𝐶) = 𝐶)
1312ad2antrr 713 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
14 simplr 756 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝐶)
15 simprl 758 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑌𝐶)
16 simprr 760 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝑌)
17 dmdprdsplit.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
187, 13, 14, 15, 16, 17dprdcntz 18883 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝑍‘((𝑆𝐶)‘𝑌)))
19 fvres 6520 . . . . . . 7 (𝑋𝐶 → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
2019ad2antlr 714 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
21 fvres 6520 . . . . . . . 8 (𝑌𝐶 → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2221ad2antrl 715 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2322fveq2d 6505 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑍‘((𝑆𝐶)‘𝑌)) = (𝑍‘(𝑆𝑌)))
2418, 20, 233sstr3d 3905 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
2524exp32 413 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐶 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
2619ad2antlr 714 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
276ad2antrr 713 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
2812ad2antrr 713 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
29 simplr 756 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑋𝐶)
3027, 28, 29dprdub 18900 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
3126, 30eqsstr3d 3898 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
32 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
3332ad2antrr 713 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
34 eqid 2778 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
3534dprdssv 18891 . . . . . . . 8 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
36 fvres 6520 . . . . . . . . . 10 (𝑌𝐷 → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
3736ad2antrl 715 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
38 dmdprdsplit2.2 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐷))
3938ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐷))
40 ssun2 4040 . . . . . . . . . . . . . 14 𝐷 ⊆ (𝐶𝐷)
4140, 1syl5sseqr 3912 . . . . . . . . . . . . 13 (𝜑𝐷𝐼)
428, 41fssresd 6376 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4342fdmd 6355 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐷) = 𝐷)
4443ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐷) = 𝐷)
45 simprl 758 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
4639, 44, 45dprdub 18900 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4737, 46eqsstr3d 3898 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4834, 17cntz2ss 18237 . . . . . . . 8 (((𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷))) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
4935, 47, 48sylancr 578 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
5033, 49sstrd 3870 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝑆𝑌)))
5131, 50sstrd 3870 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
5251exp32 413 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐷 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
5325, 52jaod 845 . . 3 ((𝜑𝑋𝐶) → ((𝑌𝐶𝑌𝐷) → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
545, 53sylbid 232 . 2 ((𝜑𝑋𝐶) → (𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
55 dprdgrp 18880 . . . . . . . 8 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
566, 55syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
5756adantr 473 . . . . . 6 ((𝜑𝑋𝐶) → 𝐺 ∈ Grp)
5834subgacs 18101 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
59 acsmre 16784 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
6057, 58, 593syl 18 . . . . 5 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
61 difundir 4146 . . . . . . . . . . 11 ((𝐶𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))
622difeq1d 3990 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶𝐷) ∖ {𝑋}))
63 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑋𝐶) → 𝑋𝐶)
6463snssd 4617 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → {𝑋} ⊆ 𝐶)
65 sslin 4100 . . . . . . . . . . . . . . 15 ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
67 incom 4068 . . . . . . . . . . . . . . 15 (𝐶𝐷) = (𝐷𝐶)
68 dprdsplit.i . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝐷) = ∅)
6968adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → (𝐶𝐷) = ∅)
7067, 69syl5eqr 2828 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷𝐶) = ∅)
71 sseq0 4240 . . . . . . . . . . . . . 14 (((𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶) ∧ (𝐷𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅)
7266, 70, 71syl2anc 576 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) = ∅)
73 disj3 4287 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋}))
7472, 73sylib 210 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → 𝐷 = (𝐷 ∖ {𝑋}))
7574uneq2d 4030 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})))
7661, 62, 753eqtr4a 2840 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷))
7776imaeq2d 5772 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)))
78 imaundi 5850 . . . . . . . . 9 (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
7977, 78syl6eq 2830 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
8079unieqd 4723 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
81 uniun 4732 . . . . . . 7 ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
8280, 81syl6eq 2830 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
83 dmdprdsplit2lem.k . . . . . . . . 9 𝐾 = (mrCls‘(SubGrp‘𝐺))
84 difss 4000 . . . . . . . . . . 11 (𝐶 ∖ {𝑋}) ⊆ 𝐶
85 imass2 5807 . . . . . . . . . . 11 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
86 uniss 4734 . . . . . . . . . . 11 ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
8784, 85, 86mp2b 10 . . . . . . . . . 10 (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶)
88 imassrn 5783 . . . . . . . . . . . 12 (𝑆𝐶) ⊆ ran 𝑆
898frnd 6353 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
9089adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺))
91 mresspw 16724 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9260, 91syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9390, 92sstrd 3870 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
9488, 93syl5ss 3871 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ 𝒫 (Base‘𝐺))
95 sspwuni 4889 . . . . . . . . . . 11 ((𝑆𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐶) ⊆ (Base‘𝐺))
9694, 95sylib 210 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ (Base‘𝐺))
9787, 96syl5ss 3871 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺))
9860, 83, 97mrcssidd 16757 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
99 imassrn 5783 . . . . . . . . . . . 12 (𝑆𝐷) ⊆ ran 𝑆
10099, 93syl5ss 3871 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ 𝒫 (Base‘𝐺))
101 sspwuni 4889 . . . . . . . . . . 11 ((𝑆𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐷) ⊆ (Base‘𝐺))
102100, 101sylib 210 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (Base‘𝐺))
10360, 83, 102mrcssidd 16757 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐾 (𝑆𝐷)))
10483dprdspan 18902 . . . . . . . . . . . 12 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
10538, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
106 df-ima 5421 . . . . . . . . . . . . 13 (𝑆𝐷) = ran (𝑆𝐷)
107106unieqi 4722 . . . . . . . . . . . 12 (𝑆𝐷) = ran (𝑆𝐷)
108107fveq2i 6504 . . . . . . . . . . 11 (𝐾 (𝑆𝐷)) = (𝐾 ran (𝑆𝐷))
109105, 108syl6eqr 2832 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
110109adantr 473 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
111103, 110sseqtr4d 3900 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷)))
112 unss12 4048 . . . . . . . 8 (( (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷))) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11398, 111, 112syl2anc 576 . . . . . . 7 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11483mrccl 16743 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
11560, 97, 114syl2anc 576 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
116 dprdsubg 18899 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
11738, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
118117adantr 473 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
119 eqid 2778 . . . . . . . . 9 (LSSum‘𝐺) = (LSSum‘𝐺)
120119lsmunss 18547 . . . . . . . 8 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
121115, 118, 120syl2anc 576 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
122113, 121sstrd 3870 . . . . . 6 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12382, 122eqsstrd 3897 . . . . 5 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12487a1i 11 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
12560, 83, 124, 96mrcssd 16756 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾 (𝑆𝐶)))
12683dprdspan 18902 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
1276, 126syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
128 df-ima 5421 . . . . . . . . . . . 12 (𝑆𝐶) = ran (𝑆𝐶)
129128unieqi 4722 . . . . . . . . . . 11 (𝑆𝐶) = ran (𝑆𝐶)
130129fveq2i 6504 . . . . . . . . . 10 (𝐾 (𝑆𝐶)) = (𝐾 ran (𝑆𝐶))
131127, 130syl6eqr 2832 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
132131adantr 473 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
133125, 132sseqtr4d 3900 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶)))
13432adantr 473 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
135133, 134sstrd 3870 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
136119, 17lsmsubg 18543 . . . . . 6 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷)))) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
137115, 118, 135, 136syl3anc 1351 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
13883mrcsscl 16752 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∧ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
13960, 123, 137, 138syl3anc 1351 . . . 4 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
140 sslin 4100 . . . 4 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
141139, 140syl 17 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
14210sselda 3860 . . . . 5 ((𝜑𝑋𝐶) → 𝑋𝐼)
1438ffvelrnda 6678 . . . . 5 ((𝜑𝑋𝐼) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
144142, 143syldan 582 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
145 dmdprdsplit.0 . . . 4 0 = (0g𝐺)
14619adantl 474 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
1476adantr 473 . . . . . . . . . 10 ((𝜑𝑋𝐶) → 𝐺dom DProd (𝑆𝐶))
14812adantr 473 . . . . . . . . . 10 ((𝜑𝑋𝐶) → dom (𝑆𝐶) = 𝐶)
149147, 148, 63dprdub 18900 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
150146, 149eqsstr3d 3898 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
151 dprdsubg 18899 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
1526, 151syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
153152adantr 473 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
154119lsmlub 18552 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
155144, 115, 153, 154syl3anc 1351 . . . . . . . 8 ((𝜑𝑋𝐶) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
156150, 133, 155mpbi2and 699 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶)))
157156ssrind 4101 . . . . . 6 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
158 dmdprdsplit2.4 . . . . . . 7 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
159158adantr 473 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
160157, 159sseqtrd 3899 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
161119lsmub1 18545 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
162144, 115, 161syl2anc 576 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
163145subg0cl 18074 . . . . . . . . 9 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑋))
164144, 163syl 17 . . . . . . . 8 ((𝜑𝑋𝐶) → 0 ∈ (𝑆𝑋))
165162, 164sseldd 3861 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
166145subg0cl 18074 . . . . . . . 8 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
167118, 166syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
168165, 167elind 4061 . . . . . 6 ((𝜑𝑋𝐶) → 0 ∈ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
169168snssd 4617 . . . . 5 ((𝜑𝑋𝐶) → { 0 } ⊆ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
170160, 169eqssd 3877 . . . 4 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
171 resima2 5735 . . . . . . . . 9 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
17284, 171mp1i 13 . . . . . . . 8 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
173172unieqd 4723 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
174173fveq2d 6505 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
175146, 174ineq12d 4079 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
176147, 148, 63, 145, 83dprddisj 18884 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 })
177175, 176eqtr3d 2816 . . . 4 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 })
1788adantr 473 . . . . . . . 8 ((𝜑𝑋𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺))
179 ffun 6349 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
180 funiunfv 6834 . . . . . . . 8 (Fun 𝑆 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
181178, 179, 1803syl 18 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
1826ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆𝐶))
18312ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆𝐶) = 𝐶)
184 eldifi 3995 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝐶)
185184adantl 474 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝐶)
186 simplr 756 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋𝐶)
187 eldifsni 4597 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝑋)
188187adantl 474 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝑋)
189182, 183, 185, 186, 188, 17dprdcntz 18883 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) ⊆ (𝑍‘((𝑆𝐶)‘𝑋)))
190185fvresd 6521 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) = (𝑆𝑦))
19119ad2antlr 714 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
192191fveq2d 6505 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆𝐶)‘𝑋)) = (𝑍‘(𝑆𝑋)))
193189, 190, 1923sstr3d 3905 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
194193ralrimiva 3132 . . . . . . . 8 ((𝜑𝑋𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
195 iunss 4836 . . . . . . . 8 ( 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
196194, 195sylibr 226 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
197181, 196eqsstr3d 3898 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)))
19834subgss 18067 . . . . . . . 8 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → (𝑆𝑋) ⊆ (Base‘𝐺))
199144, 198syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (Base‘𝐺))
20034, 17cntzsubg 18241 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20157, 199, 200syl2anc 576 . . . . . 6 ((𝜑𝑋𝐶) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20283mrcsscl 16752 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)) ∧ (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20360, 197, 201, 202syl3anc 1351 . . . . 5 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20417, 115, 144, 203cntzrecd 18565 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝑍‘(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
205119, 144, 115, 118, 145, 170, 177, 17, 204lsmdisj3 18570 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))) = { 0 })
206141, 205sseqtrd 3899 . 2 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })
20754, 206jca 504 1 ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2967  wral 3088  cdif 3828  cun 3829  cin 3830  wss 3831  c0 4180  𝒫 cpw 4423  {csn 4442   cuni 4713   ciun 4793   class class class wbr 4930  dom cdm 5408  ran crn 5409  cres 5410  cima 5411  Fun wfun 6184  wf 6186  cfv 6190  (class class class)co 6978  Basecbs 16342  0gc0g 16572  Moorecmre 16714  mrClscmrc 16715  ACScacs 16717  Grpcgrp 17894  SubGrpcsubg 18060  Cntzccntz 18219  LSSumclsm 18523   DProd cdprd 18868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-tpos 7697  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-map 8210  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-hash 13509  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-0g 16574  df-gsum 16575  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-submnd 17807  df-grp 17897  df-minusg 17898  df-sbg 17899  df-mulg 18015  df-subg 18063  df-ghm 18130  df-gim 18173  df-cntz 18221  df-oppg 18248  df-lsm 18525  df-cmn 18671  df-dprd 18870
This theorem is referenced by:  dmdprdsplit2  18921
  Copyright terms: Public domain W3C validator