MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Visualization version   GIF version

Theorem dmdprdsplit2lem 19984
Description: Lemma for dmdprdsplit 19986. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
dmdprdsplit2lem.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdsplit2lem ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))

Proof of Theorem dmdprdsplit2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6 (𝜑𝐼 = (𝐶𝐷))
21adantr 480 . . . . 5 ((𝜑𝑋𝐶) → 𝐼 = (𝐶𝐷))
32eleq2d 2815 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐼𝑌 ∈ (𝐶𝐷)))
4 elun 4119 . . . 4 (𝑌 ∈ (𝐶𝐷) ↔ (𝑌𝐶𝑌𝐷))
53, 4bitrdi 287 . . 3 ((𝜑𝑋𝐶) → (𝑌𝐼 ↔ (𝑌𝐶𝑌𝐷)))
6 dmdprdsplit2.1 . . . . . . . 8 (𝜑𝐺dom DProd (𝑆𝐶))
76ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
8 dprdsplit.2 . . . . . . . . . 10 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4144 . . . . . . . . . . 11 𝐶 ⊆ (𝐶𝐷)
109, 1sseqtrrid 3993 . . . . . . . . . 10 (𝜑𝐶𝐼)
118, 10fssresd 6730 . . . . . . . . 9 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6701 . . . . . . . 8 (𝜑 → dom (𝑆𝐶) = 𝐶)
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
14 simplr 768 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝐶)
15 simprl 770 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑌𝐶)
16 simprr 772 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → 𝑋𝑌)
17 dmdprdsplit.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
187, 13, 14, 15, 16, 17dprdcntz 19947 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝑍‘((𝑆𝐶)‘𝑌)))
19 fvres 6880 . . . . . . 7 (𝑋𝐶 → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
2019ad2antlr 727 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
21 fvres 6880 . . . . . . . 8 (𝑌𝐶 → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2221ad2antrl 728 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → ((𝑆𝐶)‘𝑌) = (𝑆𝑌))
2322fveq2d 6865 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑍‘((𝑆𝐶)‘𝑌)) = (𝑍‘(𝑆𝑌)))
2418, 20, 233sstr3d 4004 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐶𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
2524exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐶 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
2619ad2antlr 727 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
276ad2antrr 726 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐶))
2812ad2antrr 726 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐶) = 𝐶)
29 simplr 768 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑋𝐶)
3027, 28, 29dprdub 19964 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
3126, 30eqsstrrd 3985 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
32 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
3332ad2antrr 726 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
34 eqid 2730 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
3534dprdssv 19955 . . . . . . . 8 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
36 fvres 6880 . . . . . . . . . 10 (𝑌𝐷 → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
3736ad2antrl 728 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) = (𝑆𝑌))
38 dmdprdsplit2.2 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐷))
3938ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝐺dom DProd (𝑆𝐷))
40 ssun2 4145 . . . . . . . . . . . . . 14 𝐷 ⊆ (𝐶𝐷)
4140, 1sseqtrrid 3993 . . . . . . . . . . . . 13 (𝜑𝐷𝐼)
428, 41fssresd 6730 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4342fdmd 6701 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐷) = 𝐷)
4443ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → dom (𝑆𝐷) = 𝐷)
45 simprl 770 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
4639, 44, 45dprdub 19964 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → ((𝑆𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4737, 46eqsstrrd 3985 . . . . . . . 8 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷)))
4834, 17cntz2ss 19274 . . . . . . . 8 (((𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆𝑌) ⊆ (𝐺 DProd (𝑆𝐷))) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
4935, 47, 48sylancr 587 . . . . . . 7 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ⊆ (𝑍‘(𝑆𝑌)))
5033, 49sstrd 3960 . . . . . 6 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝑆𝑌)))
5131, 50sstrd 3960 . . . . 5 (((𝜑𝑋𝐶) ∧ (𝑌𝐷𝑋𝑌)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
5251exp32 420 . . . 4 ((𝜑𝑋𝐶) → (𝑌𝐷 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
5325, 52jaod 859 . . 3 ((𝜑𝑋𝐶) → ((𝑌𝐶𝑌𝐷) → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
545, 53sylbid 240 . 2 ((𝜑𝑋𝐶) → (𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))))
55 dprdgrp 19944 . . . . . . . 8 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
566, 55syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
5756adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → 𝐺 ∈ Grp)
5834subgacs 19100 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
59 acsmre 17620 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
6057, 58, 593syl 18 . . . . 5 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
61 difundir 4257 . . . . . . . . . . 11 ((𝐶𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))
622difeq1d 4091 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶𝐷) ∖ {𝑋}))
63 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑋𝐶) → 𝑋𝐶)
6463snssd 4776 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → {𝑋} ⊆ 𝐶)
65 sslin 4209 . . . . . . . . . . . . . . 15 ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶))
67 incom 4175 . . . . . . . . . . . . . . 15 (𝐶𝐷) = (𝐷𝐶)
68 dprdsplit.i . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝐷) = ∅)
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝐶) → (𝐶𝐷) = ∅)
7067, 69eqtr3id 2779 . . . . . . . . . . . . . 14 ((𝜑𝑋𝐶) → (𝐷𝐶) = ∅)
71 sseq0 4369 . . . . . . . . . . . . . 14 (((𝐷 ∩ {𝑋}) ⊆ (𝐷𝐶) ∧ (𝐷𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅)
7266, 70, 71syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐷 ∩ {𝑋}) = ∅)
73 disj3 4420 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋}))
7472, 73sylib 218 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → 𝐷 = (𝐷 ∖ {𝑋}))
7574uneq2d 4134 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})))
7661, 62, 753eqtr4a 2791 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷))
7776imaeq2d 6034 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)))
78 imaundi 6125 . . . . . . . . 9 (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
7977, 78eqtrdi 2781 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
8079unieqd 4887 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
81 uniun 4897 . . . . . . 7 ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷))
8280, 81eqtrdi 2781 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)))
83 dmdprdsplit2lem.k . . . . . . . . 9 𝐾 = (mrCls‘(SubGrp‘𝐺))
84 difss 4102 . . . . . . . . . . 11 (𝐶 ∖ {𝑋}) ⊆ 𝐶
85 imass2 6076 . . . . . . . . . . 11 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
86 uniss 4882 . . . . . . . . . . 11 ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
8784, 85, 86mp2b 10 . . . . . . . . . 10 (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶)
88 imassrn 6045 . . . . . . . . . . . 12 (𝑆𝐶) ⊆ ran 𝑆
898frnd 6699 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺))
91 mresspw 17560 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9260, 91syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
9390, 92sstrd 3960 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
9488, 93sstrid 3961 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ 𝒫 (Base‘𝐺))
95 sspwuni 5067 . . . . . . . . . . 11 ((𝑆𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐶) ⊆ (Base‘𝐺))
9694, 95sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐶) ⊆ (Base‘𝐺))
9787, 96sstrid 3961 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺))
9860, 83, 97mrcssidd 17593 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
99 imassrn 6045 . . . . . . . . . . . 12 (𝑆𝐷) ⊆ ran 𝑆
10099, 93sstrid 3961 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ 𝒫 (Base‘𝐺))
101 sspwuni 5067 . . . . . . . . . . 11 ((𝑆𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆𝐷) ⊆ (Base‘𝐺))
102100, 101sylib 218 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (Base‘𝐺))
10360, 83, 102mrcssidd 17593 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐾 (𝑆𝐷)))
10483dprdspan 19966 . . . . . . . . . . . 12 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
10538, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 ran (𝑆𝐷)))
106 df-ima 5654 . . . . . . . . . . . . 13 (𝑆𝐷) = ran (𝑆𝐷)
107106unieqi 4886 . . . . . . . . . . . 12 (𝑆𝐷) = ran (𝑆𝐷)
108107fveq2i 6864 . . . . . . . . . . 11 (𝐾 (𝑆𝐷)) = (𝐾 ran (𝑆𝐷))
109105, 108eqtr4di 2783 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
110109adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) = (𝐾 (𝑆𝐷)))
111103, 110sseqtrrd 3987 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷)))
112 unss12 4154 . . . . . . . 8 (( (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ (𝑆𝐷) ⊆ (𝐺 DProd (𝑆𝐷))) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11398, 111, 112syl2anc 584 . . . . . . 7 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))))
11483mrccl 17579 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
11560, 97, 114syl2anc 584 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
116 dprdsubg 19963 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
11738, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
118117adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
119 eqid 2730 . . . . . . . . 9 (LSSum‘𝐺) = (LSSum‘𝐺)
120119lsmunss 19596 . . . . . . . 8 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
121115, 118, 120syl2anc 584 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
122113, 121sstrd 3960 . . . . . 6 ((𝜑𝑋𝐶) → ( (𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆𝐷)) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12382, 122eqsstrd 3984 . . . . 5 ((𝜑𝑋𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
12487a1i 11 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆𝐶))
12560, 83, 124, 96mrcssd 17592 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾 (𝑆𝐶)))
12683dprdspan 19966 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
1276, 126syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 ran (𝑆𝐶)))
128 df-ima 5654 . . . . . . . . . . . 12 (𝑆𝐶) = ran (𝑆𝐶)
129128unieqi 4886 . . . . . . . . . . 11 (𝑆𝐶) = ran (𝑆𝐶)
130129fveq2i 6864 . . . . . . . . . 10 (𝐾 (𝑆𝐶)) = (𝐾 ran (𝑆𝐶))
131127, 130eqtr4di 2783 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
132131adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) = (𝐾 (𝑆𝐶)))
133125, 132sseqtrrd 3987 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶)))
13432adantr 480 . . . . . . 7 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
135133, 134sstrd 3960 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
136119, 17lsmsubg 19591 . . . . . 6 (((𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷)))) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
137115, 118, 135, 136syl3anc 1373 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
13883mrcsscl 17588 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∧ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
13960, 123, 137, 138syl3anc 1373 . . . 4 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))))
140 sslin 4209 . . . 4 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷))) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
141139, 140syl 17 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))))
14210sselda 3949 . . . . 5 ((𝜑𝑋𝐶) → 𝑋𝐼)
1438ffvelcdmda 7059 . . . . 5 ((𝜑𝑋𝐼) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
144142, 143syldan 591 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ∈ (SubGrp‘𝐺))
145 dmdprdsplit.0 . . . 4 0 = (0g𝐺)
14619adantl 481 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
1476adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → 𝐺dom DProd (𝑆𝐶))
14812adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐶) → dom (𝑆𝐶) = 𝐶)
149147, 148, 63dprdub 19964 . . . . . . . . 9 ((𝜑𝑋𝐶) → ((𝑆𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
150146, 149eqsstrrd 3985 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)))
151 dprdsubg 19963 . . . . . . . . . . 11 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
1526, 151syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
153152adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
154119lsmlub 19601 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
155144, 115, 153, 154syl3anc 1373 . . . . . . . 8 ((𝜑𝑋𝐶) → (((𝑆𝑋) ⊆ (𝐺 DProd (𝑆𝐶)) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆𝐶))) ↔ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶))))
156150, 133, 155mpbi2and 712 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆𝐶)))
157156ssrind 4210 . . . . . 6 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
158 dmdprdsplit2.4 . . . . . . 7 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
159158adantr 480 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
160157, 159sseqtrd 3986 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
161119lsmub1 19594 . . . . . . . . 9 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
162144, 115, 161syl2anc 584 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
163145subg0cl 19073 . . . . . . . . 9 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑋))
164144, 163syl 17 . . . . . . . 8 ((𝜑𝑋𝐶) → 0 ∈ (𝑆𝑋))
165162, 164sseldd 3950 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ ((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
166145subg0cl 19073 . . . . . . . 8 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
167118, 166syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
168165, 167elind 4166 . . . . . 6 ((𝜑𝑋𝐶) → 0 ∈ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
169168snssd 4776 . . . . 5 ((𝜑𝑋𝐶) → { 0 } ⊆ (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))))
170160, 169eqssd 3967 . . . 4 ((𝜑𝑋𝐶) → (((𝑆𝑋)(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
171 resima2 5990 . . . . . . . . 9 ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
17284, 171mp1i 13 . . . . . . . 8 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
173172unieqd 4887 . . . . . . 7 ((𝜑𝑋𝐶) → ((𝑆𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋})))
174173fveq2d 6865 . . . . . 6 ((𝜑𝑋𝐶) → (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))))
175146, 174ineq12d 4187 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
176147, 148, 63, 145, 83dprddisj 19948 . . . . 5 ((𝜑𝑋𝐶) → (((𝑆𝐶)‘𝑋) ∩ (𝐾 ((𝑆𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 })
177175, 176eqtr3d 2767 . . . 4 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 })
1788adantr 480 . . . . . . . 8 ((𝜑𝑋𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺))
179 ffun 6694 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
180 funiunfv 7225 . . . . . . . 8 (Fun 𝑆 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
181178, 179, 1803syl 18 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) = (𝑆 “ (𝐶 ∖ {𝑋})))
1826ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆𝐶))
18312ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆𝐶) = 𝐶)
184 eldifi 4097 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝐶)
185184adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝐶)
186 simplr 768 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋𝐶)
187 eldifsni 4757 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦𝑋)
188187adantl 481 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦𝑋)
189182, 183, 185, 186, 188, 17dprdcntz 19947 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) ⊆ (𝑍‘((𝑆𝐶)‘𝑋)))
190185fvresd 6881 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑦) = (𝑆𝑦))
19119ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆𝐶)‘𝑋) = (𝑆𝑋))
192191fveq2d 6865 . . . . . . . . . 10 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆𝐶)‘𝑋)) = (𝑍‘(𝑆𝑋)))
193189, 190, 1923sstr3d 4004 . . . . . . . . 9 (((𝜑𝑋𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
194193ralrimiva 3126 . . . . . . . 8 ((𝜑𝑋𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
195 iunss 5012 . . . . . . . 8 ( 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
196194, 195sylibr 234 . . . . . . 7 ((𝜑𝑋𝐶) → 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆𝑦) ⊆ (𝑍‘(𝑆𝑋)))
197181, 196eqsstrrd 3985 . . . . . 6 ((𝜑𝑋𝐶) → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)))
19834subgss 19066 . . . . . . . 8 ((𝑆𝑋) ∈ (SubGrp‘𝐺) → (𝑆𝑋) ⊆ (Base‘𝐺))
199144, 198syl 17 . . . . . . 7 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (Base‘𝐺))
20034, 17cntzsubg 19278 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20157, 199, 200syl2anc 584 . . . . . 6 ((𝜑𝑋𝐶) → (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺))
20283mrcsscl 17588 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆𝑋)) ∧ (𝑍‘(𝑆𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20360, 197, 201, 202syl3anc 1373 . . . . 5 ((𝜑𝑋𝐶) → (𝐾 (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆𝑋)))
20417, 115, 144, 203cntzrecd 19615 . . . 4 ((𝜑𝑋𝐶) → (𝑆𝑋) ⊆ (𝑍‘(𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))))
205119, 144, 115, 118, 145, 170, 177, 17, 204lsmdisj3 19620 . . 3 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ ((𝐾 (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆𝐷)))) = { 0 })
206141, 205sseqtrd 3986 . 2 ((𝜑𝑋𝐶) → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })
20754, 206jca 511 1 ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  0gc0g 17409  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553  Grpcgrp 18872  SubGrpcsubg 19059  Cntzccntz 19254  LSSumclsm 19571   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-dprd 19934
This theorem is referenced by:  dmdprdsplit2  19985
  Copyright terms: Public domain W3C validator