Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem3 Structured version   Visualization version   GIF version

Theorem ovolval5lem3 44192
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
ovolval5lem3.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5lem3 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Distinct variable groups:   𝐴,𝑓,𝑧,𝑦   𝑦,𝑀,𝑧   𝑄,𝑓,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolval5lem3
Dummy variables 𝑔 𝑛 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5lem3.q . . . . 5 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2 ssrab2 4013 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ ℝ*
31, 2eqsstri 3955 . . . 4 𝑄 ⊆ ℝ*
4 infxrcl 13067 . . . 4 (𝑄 ⊆ ℝ* → inf(𝑄, ℝ*, < ) ∈ ℝ*)
53, 4mp1i 13 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ∈ ℝ*)
6 ovolval5lem3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
7 ssrab2 4013 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ⊆ ℝ*
86, 7eqsstri 3955 . . . 4 𝑀 ⊆ ℝ*
9 infxrcl 13067 . . . 4 (𝑀 ⊆ ℝ* → inf(𝑀, ℝ*, < ) ∈ ℝ*)
108, 9mp1i 13 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ∈ ℝ*)
113a1i 11 . . . 4 (⊤ → 𝑄 ⊆ ℝ*)
128a1i 11 . . . 4 (⊤ → 𝑀 ⊆ ℝ*)
13 simpr 485 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
146rabeq2i 3422 . . . . . . . . 9 (𝑦𝑀 ↔ (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1514biimpi 215 . . . . . . . 8 (𝑦𝑀 → (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1615simprd 496 . . . . . . 7 (𝑦𝑀 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
1716adantr 481 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
18 coeq2 5767 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
1918rneqd 5847 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2019unieqd 4853 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2120sseq2d 3953 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
22 coeq2 5767 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
2322fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
2423eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2521, 24anbi12d 631 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2625cbvrexvw 3384 . . . . . . . . . . . 12 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2726rabbii 3408 . . . . . . . . . . 11 {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
281, 27eqtr4i 2769 . . . . . . . . . 10 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
29 simp3r 1201 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
30 eqid 2738 . . . . . . . . . 10 ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩))) = (Σ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩)))
31 elmapi 8637 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
32313ad2ant2 1133 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓:ℕ⟶(ℝ × ℝ))
33 simp3l 1200 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
34 simp1 1135 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑤 ∈ ℝ+)
35 2fveq3 6779 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
36 oveq2 7283 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3736oveq2d 7291 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑤 / (2↑𝑚)) = (𝑤 / (2↑𝑛)))
3835, 37oveq12d 7293 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))) = ((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))))
39 2fveq3 6779 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
4038, 39opeq12d 4812 . . . . . . . . . . 11 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4140cbvmptv 5187 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4228, 29, 30, 32, 33, 34, 41ovolval5lem2 44191 . . . . . . . . 9 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
43423exp 1118 . . . . . . . 8 (𝑤 ∈ ℝ+ → (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))))
4443rexlimdv 3212 . . . . . . 7 (𝑤 ∈ ℝ+ → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤)))
4544imp 407 . . . . . 6 ((𝑤 ∈ ℝ+ ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4613, 17, 45syl2anc 584 . . . . 5 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
47463adant1 1129 . . . 4 ((⊤ ∧ 𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4811, 12, 47infleinf 42911 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ≤ inf(𝑀, ℝ*, < ))
49 eqeq1 2742 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
5049anbi2d 629 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5150rexbidv 3226 . . . . . . . 8 (𝑧 = 𝑦 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5251cbvrabv 3426 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
53 simpr 485 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
54 ioossico 13170 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))
5554a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
5631adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
57 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5856, 57fvovco 42732 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
5956, 57fvovco 42732 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (([,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
6058, 59sseq12d 3954 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) ↔ ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))))
6155, 60mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
6261ralrimiva 3103 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
63 ss2iun 4942 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
65 ioof 13179 . . . . . . . . . . . . . . . . . . . . 21 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
67 rexpssxrxp 11020 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6931, 68fssd 6618 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
70 fco 6624 . . . . . . . . . . . . . . . . . . . 20 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7166, 69, 70syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7271ffnd 6601 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓) Fn ℕ)
73 fniunfv 7120 . . . . . . . . . . . . . . . . . 18 (((,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
75 icof 42759 . . . . . . . . . . . . . . . . . . . . 21 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
77 fco 6624 . . . . . . . . . . . . . . . . . . . 20 (([,):(ℝ* × ℝ*)⟶𝒫 ℝ*𝑓:ℕ⟶(ℝ* × ℝ*)) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7876, 69, 77syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7978ffnd 6601 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓) Fn ℕ)
80 fniunfv 7120 . . . . . . . . . . . . . . . . . 18 (([,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8179, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8274, 81sseq12d 3954 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) ↔ ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓)))
8364, 82mpbid 231 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8483adantr 481 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8553, 84sstrd 3931 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ([,) ∘ 𝑓))
8685adantrr 714 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
87 simpr 485 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
8831voliooicof 43537 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝑓))
8988fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9089adantr 481 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9187, 90eqtrd 2778 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9291adantrl 713 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9386, 92jca 512 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9493ex 413 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9594reximia 3176 . . . . . . . . 9 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9695rgenw 3076 . . . . . . . 8 𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
97 ss2rab 4004 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ↔ ∀𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9896, 97mpbir 230 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
9952, 98eqsstri 3955 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1001, 6sseq12i 3951 . . . . . 6 (𝑄𝑀 ↔ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
10199, 100mpbir 230 . . . . 5 𝑄𝑀
102 infxrss 13073 . . . . 5 ((𝑄𝑀𝑀 ⊆ ℝ*) → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
103101, 8, 102mp2an 689 . . . 4 inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < )
104103a1i 11 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
1055, 10, 48, 104xrletrid 12889 . 2 (⊤ → inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < ))
106105mptru 1546 1 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  𝒫 cpw 4533  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  infcinf 9200  cr 10870  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  +crp 12730   +𝑒 cxad 12846  (,)cioo 13079  [,)cico 13081  cexp 13782  volcvol 24627  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-sumge0 43901
This theorem is referenced by:  ovolval5  44193
  Copyright terms: Public domain W3C validator