Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem3 Structured version   Visualization version   GIF version

Theorem ovolval5lem3 46639
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
ovolval5lem3.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5lem3 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Distinct variable groups:   𝐴,𝑓,𝑧,𝑦   𝑦,𝑀,𝑧   𝑄,𝑓,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolval5lem3
Dummy variables 𝑔 𝑛 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5lem3.q . . . . 5 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
21ssrab3 4033 . . . 4 𝑄 ⊆ ℝ*
3 infxrcl 13236 . . . 4 (𝑄 ⊆ ℝ* → inf(𝑄, ℝ*, < ) ∈ ℝ*)
42, 3mp1i 13 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ∈ ℝ*)
5 ovolval5lem3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
65ssrab3 4033 . . . 4 𝑀 ⊆ ℝ*
7 infxrcl 13236 . . . 4 (𝑀 ⊆ ℝ* → inf(𝑀, ℝ*, < ) ∈ ℝ*)
86, 7mp1i 13 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ∈ ℝ*)
92a1i 11 . . . 4 (⊤ → 𝑄 ⊆ ℝ*)
106a1i 11 . . . 4 (⊤ → 𝑀 ⊆ ℝ*)
115reqabi 3418 . . . . . . 7 (𝑦𝑀 ↔ (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1211simprbi 496 . . . . . 6 (𝑦𝑀 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
13 coeq2 5801 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
1413rneqd 5880 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
1514unieqd 4871 . . . . . . . . . . . . 13 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
1615sseq2d 3968 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
17 coeq2 5801 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
1817fveq2d 6826 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
1918eqeq2d 2740 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2016, 19anbi12d 632 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2120cbvrexvw 3208 . . . . . . . . . 10 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2221rabbii 3400 . . . . . . . . 9 {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
231, 22eqtr4i 2755 . . . . . . . 8 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
24 simp3r 1203 . . . . . . . 8 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
25 eqid 2729 . . . . . . . 8 ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩))) = (Σ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩)))
26 elmapi 8776 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
27263ad2ant2 1134 . . . . . . . 8 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓:ℕ⟶(ℝ × ℝ))
28 simp3l 1202 . . . . . . . 8 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
29 simp1 1136 . . . . . . . 8 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑤 ∈ ℝ+)
30 2fveq3 6827 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
31 oveq2 7357 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3231oveq2d 7365 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑤 / (2↑𝑚)) = (𝑤 / (2↑𝑛)))
3330, 32oveq12d 7367 . . . . . . . . . 10 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))) = ((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))))
34 2fveq3 6827 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
3533, 34opeq12d 4832 . . . . . . . . 9 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
3635cbvmptv 5196 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
3723, 24, 25, 27, 28, 29, 36ovolval5lem2 46638 . . . . . . 7 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
3837rexlimdv3a 3134 . . . . . 6 (𝑤 ∈ ℝ+ → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤)))
3912, 38mpan9 506 . . . . 5 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
40393adant1 1130 . . . 4 ((⊤ ∧ 𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
419, 10, 40infleinf 45355 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ≤ inf(𝑀, ℝ*, < ))
42 eqeq1 2733 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
4342anbi2d 630 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
4443rexbidv 3153 . . . . . . . 8 (𝑧 = 𝑦 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
4544cbvrabv 3405 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
46 simpr 484 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
47 ioossico 13341 . . . . . . . . . . . . . . . . . . 19 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))
4847a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
4926adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
50 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5149, 50fvovco 45175 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
5249, 50fvovco 45175 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (([,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
5348, 51, 523sstr4d 3991 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
5453ralrimiva 3121 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
55 ss2iun 4960 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
57 ioof 13350 . . . . . . . . . . . . . . . . . . 19 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
59 rexpssxrxp 11160 . . . . . . . . . . . . . . . . . . 19 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6158, 60, 26fcoss 45192 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
6261ffnd 6653 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓) Fn ℕ)
63 fniunfv 7183 . . . . . . . . . . . . . . . 16 (((,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
65 icof 45201 . . . . . . . . . . . . . . . . . . 19 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
6665a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
6766, 60, 26fcoss 45192 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
6867ffnd 6653 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓) Fn ℕ)
69 fniunfv 7183 . . . . . . . . . . . . . . . 16 (([,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
7156, 64, 703sstr3d 3990 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
7271adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
7346, 72sstrd 3946 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ([,) ∘ 𝑓))
74 simpr 484 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
7526voliooicof 45981 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝑓))
7675fveq2d 6826 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
7776adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
7874, 77eqtrd 2764 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
7973, 78anim12dan 619 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
8079ex 412 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
8180reximia 3064 . . . . . . . . 9 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
8281a1i 11 . . . . . . . 8 (𝑦 ∈ ℝ* → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
8382ss2rabi 4028 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
8445, 83eqsstri 3982 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
8584, 1, 53sstr4i 3987 . . . . 5 𝑄𝑀
86 infxrss 13242 . . . . 5 ((𝑄𝑀𝑀 ⊆ ℝ*) → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
8785, 6, 86mp2an 692 . . . 4 inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < )
8887a1i 11 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
894, 8, 41, 88xrletrid 13057 . 2 (⊤ → inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < ))
9089mptru 1547 1 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  {crab 3394  wss 3903  𝒫 cpw 4551  cop 4583   cuni 4858   ciun 4941   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  m cmap 8753  infcinf 9331  cr 11008  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  +crp 12893   +𝑒 cxad 13012  (,)cioo 13248  [,)cico 13250  cexp 13968  volcvol 25362  Σ^csumge0 46347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-sumge0 46348
This theorem is referenced by:  ovolval5  46640
  Copyright terms: Public domain W3C validator