Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem3 Structured version   Visualization version   GIF version

Theorem ovolval5lem3 43867
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
ovolval5lem3.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5lem3 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Distinct variable groups:   𝐴,𝑓,𝑧,𝑦   𝑦,𝑀,𝑧   𝑄,𝑓,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolval5lem3
Dummy variables 𝑔 𝑛 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5lem3.q . . . . 5 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2 ssrab2 3993 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ ℝ*
31, 2eqsstri 3935 . . . 4 𝑄 ⊆ ℝ*
4 infxrcl 12923 . . . 4 (𝑄 ⊆ ℝ* → inf(𝑄, ℝ*, < ) ∈ ℝ*)
53, 4mp1i 13 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ∈ ℝ*)
6 ovolval5lem3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
7 ssrab2 3993 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ⊆ ℝ*
86, 7eqsstri 3935 . . . 4 𝑀 ⊆ ℝ*
9 infxrcl 12923 . . . 4 (𝑀 ⊆ ℝ* → inf(𝑀, ℝ*, < ) ∈ ℝ*)
108, 9mp1i 13 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ∈ ℝ*)
113a1i 11 . . . 4 (⊤ → 𝑄 ⊆ ℝ*)
128a1i 11 . . . 4 (⊤ → 𝑀 ⊆ ℝ*)
13 simpr 488 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
146rabeq2i 3398 . . . . . . . . 9 (𝑦𝑀 ↔ (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1514biimpi 219 . . . . . . . 8 (𝑦𝑀 → (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1615simprd 499 . . . . . . 7 (𝑦𝑀 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
1716adantr 484 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
18 coeq2 5727 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
1918rneqd 5807 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2019unieqd 4833 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2120sseq2d 3933 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
22 coeq2 5727 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
2322fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
2423eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2521, 24anbi12d 634 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2625cbvrexvw 3359 . . . . . . . . . . . 12 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2726rabbii 3383 . . . . . . . . . . 11 {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
281, 27eqtr4i 2768 . . . . . . . . . 10 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
29 simp3r 1204 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
30 eqid 2737 . . . . . . . . . 10 ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩))) = (Σ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩)))
31 elmapi 8530 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
32313ad2ant2 1136 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓:ℕ⟶(ℝ × ℝ))
33 simp3l 1203 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
34 simp1 1138 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑤 ∈ ℝ+)
35 2fveq3 6722 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
36 oveq2 7221 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3736oveq2d 7229 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑤 / (2↑𝑚)) = (𝑤 / (2↑𝑛)))
3835, 37oveq12d 7231 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))) = ((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))))
39 2fveq3 6722 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
4038, 39opeq12d 4792 . . . . . . . . . . 11 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4140cbvmptv 5158 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4228, 29, 30, 32, 33, 34, 41ovolval5lem2 43866 . . . . . . . . 9 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
43423exp 1121 . . . . . . . 8 (𝑤 ∈ ℝ+ → (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))))
4443rexlimdv 3202 . . . . . . 7 (𝑤 ∈ ℝ+ → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤)))
4544imp 410 . . . . . 6 ((𝑤 ∈ ℝ+ ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4613, 17, 45syl2anc 587 . . . . 5 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
47463adant1 1132 . . . 4 ((⊤ ∧ 𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4811, 12, 47infleinf 42584 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ≤ inf(𝑀, ℝ*, < ))
49 eqeq1 2741 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
5049anbi2d 632 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5150rexbidv 3216 . . . . . . . 8 (𝑧 = 𝑦 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5251cbvrabv 3402 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
53 simpr 488 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
54 ioossico 13026 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))
5554a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
5631adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
57 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5856, 57fvovco 42405 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
5956, 57fvovco 42405 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (([,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
6058, 59sseq12d 3934 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) ↔ ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))))
6155, 60mpbird 260 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
6261ralrimiva 3105 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
63 ss2iun 4922 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
65 ioof 13035 . . . . . . . . . . . . . . . . . . . . 21 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
67 rexpssxrxp 10878 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6931, 68fssd 6563 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
70 fco 6569 . . . . . . . . . . . . . . . . . . . 20 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7166, 69, 70syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7271ffnd 6546 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓) Fn ℕ)
73 fniunfv 7060 . . . . . . . . . . . . . . . . . 18 (((,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
75 icof 42432 . . . . . . . . . . . . . . . . . . . . 21 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
77 fco 6569 . . . . . . . . . . . . . . . . . . . 20 (([,):(ℝ* × ℝ*)⟶𝒫 ℝ*𝑓:ℕ⟶(ℝ* × ℝ*)) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7876, 69, 77syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7978ffnd 6546 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓) Fn ℕ)
80 fniunfv 7060 . . . . . . . . . . . . . . . . . 18 (([,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8179, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8274, 81sseq12d 3934 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) ↔ ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓)))
8364, 82mpbid 235 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8483adantr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8553, 84sstrd 3911 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ([,) ∘ 𝑓))
8685adantrr 717 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
87 simpr 488 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
8831voliooicof 43212 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝑓))
8988fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9089adantr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9187, 90eqtrd 2777 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9291adantrl 716 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9386, 92jca 515 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9493ex 416 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9594reximia 3165 . . . . . . . . 9 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9695rgenw 3073 . . . . . . . 8 𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
97 ss2rab 3984 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ↔ ∀𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9896, 97mpbir 234 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
9952, 98eqsstri 3935 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1001, 6sseq12i 3931 . . . . . 6 (𝑄𝑀 ↔ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
10199, 100mpbir 234 . . . . 5 𝑄𝑀
102 infxrss 12929 . . . . 5 ((𝑄𝑀𝑀 ⊆ ℝ*) → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
103101, 8, 102mp2an 692 . . . 4 inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < )
104103a1i 11 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
1055, 10, 48, 104xrletrid 12745 . 2 (⊤ → inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < ))
106105mptru 1550 1 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wtru 1544  wcel 2110  wral 3061  wrex 3062  {crab 3065  wss 3866  𝒫 cpw 4513  cop 4547   cuni 4819   ciun 4904   class class class wbr 5053  cmpt 5135   × cxp 5549  ran crn 5552  ccom 5555   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  m cmap 8508  infcinf 9057  cr 10728  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  +crp 12586   +𝑒 cxad 12702  (,)cioo 12935  [,)cico 12937  cexp 13635  volcvol 24360  Σ^csumge0 43575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cmp 22284  df-ovol 24361  df-vol 24362  df-sumge0 43576
This theorem is referenced by:  ovolval5  43868
  Copyright terms: Public domain W3C validator