Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumzresunsn | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
gsumzresunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzresunsn.p | ⊢ + = (+g‘𝐺) |
gsumzresunsn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzresunsn.y | ⊢ 𝑌 = (𝐹‘𝑋) |
gsumzresunsn.f | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
gsumzresunsn.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
gsumzresunsn.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzresunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzresunsn.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) |
gsumzresunsn.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
gsumzresunsn.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzresunsn.5 | ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) |
Ref | Expression |
---|---|
gsumzresunsn | ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzresunsn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumzresunsn.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumzresunsn.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) | |
5 | gsumzresunsn.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzresunsn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | gsumzresunsn.5 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) | |
8 | df-ima 5569 | . . . . 5 ⊢ (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝐹 ↾ (𝐴 ∪ {𝑋})) | |
9 | gsumzresunsn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | |
10 | gsumzresunsn.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | gsumzresunsn.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
12 | 11 | snssd 4727 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝐶) |
13 | 10, 12 | unssd 4105 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∪ {𝑋}) ⊆ 𝐶) |
14 | 9, 13 | feqresmpt 6786 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∪ {𝑋})) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
15 | 14 | rneqd 5812 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ↾ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
16 | 8, 15 | syl5eq 2790 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
17 | 16 | fveq2d 6726 | . . . 4 ⊢ (𝜑 → (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋}))) = (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
18 | 7, 16, 17 | 3sstr3d 3952 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) ⊆ (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
19 | 9 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐵) |
20 | 10 | sselda 3906 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
21 | 19, 20 | ffvelrnd 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
22 | gsumzresunsn.2 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) | |
23 | gsumzresunsn.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
24 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
25 | 24 | fveq2d 6726 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
26 | gsumzresunsn.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
27 | 25, 26 | eqtr4di 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = 𝑌) |
28 | 1, 2, 3, 4, 5, 6, 18, 21, 11, 22, 23, 27 | gsumzunsnd 19346 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
29 | 14 | oveq2d 7234 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
30 | 9, 10 | feqresmpt 6786 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
31 | 30 | oveq2d 7234 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)))) |
32 | 31 | oveq1d 7233 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
33 | 28, 29, 32 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∪ cun 3869 ⊆ wss 3871 {csn 4546 ↦ cmpt 5140 ran crn 5557 ↾ cres 5558 “ cima 5559 ⟶wf 6381 ‘cfv 6385 (class class class)co 7218 Fincfn 8631 Basecbs 16765 +gcplusg 16807 Σg cgsu 16950 Mndcmnd 18178 Cntzccntz 18714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-n0 12096 df-z 12182 df-uz 12444 df-fz 13101 df-fzo 13244 df-seq 13580 df-hash 13902 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-0g 16951 df-gsum 16952 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |