![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumzresunsn | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
gsumzresunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzresunsn.p | ⊢ + = (+g‘𝐺) |
gsumzresunsn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzresunsn.y | ⊢ 𝑌 = (𝐹‘𝑋) |
gsumzresunsn.f | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
gsumzresunsn.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
gsumzresunsn.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzresunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzresunsn.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) |
gsumzresunsn.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
gsumzresunsn.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzresunsn.5 | ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) |
Ref | Expression |
---|---|
gsumzresunsn | ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzresunsn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumzresunsn.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumzresunsn.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) | |
5 | gsumzresunsn.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzresunsn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | gsumzresunsn.5 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) | |
8 | df-ima 5713 | . . . . 5 ⊢ (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝐹 ↾ (𝐴 ∪ {𝑋})) | |
9 | gsumzresunsn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | |
10 | gsumzresunsn.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | gsumzresunsn.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
12 | 11 | snssd 4834 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝐶) |
13 | 10, 12 | unssd 4215 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∪ {𝑋}) ⊆ 𝐶) |
14 | 9, 13 | feqresmpt 6991 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∪ {𝑋})) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
15 | 14 | rneqd 5963 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ↾ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
16 | 8, 15 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
17 | 16 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋}))) = (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
18 | 7, 16, 17 | 3sstr3d 4055 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) ⊆ (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
19 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐵) |
20 | 10 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
21 | 19, 20 | ffvelcdmd 7119 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
22 | gsumzresunsn.2 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) | |
23 | gsumzresunsn.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
25 | 24 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
26 | gsumzresunsn.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
27 | 25, 26 | eqtr4di 2798 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = 𝑌) |
28 | 1, 2, 3, 4, 5, 6, 18, 21, 11, 22, 23, 27 | gsumzunsnd 19998 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
29 | 14 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
30 | 9, 10 | feqresmpt 6991 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
31 | 30 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)))) |
32 | 31 | oveq1d 7463 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
33 | 28, 29, 32 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 +gcplusg 17311 Σg cgsu 17500 Mndcmnd 18772 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 |
This theorem is referenced by: rprmdvdsprod 33527 |
Copyright terms: Public domain | W3C validator |