| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumzresunsn | Structured version Visualization version GIF version | ||
| Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| gsumzresunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumzresunsn.p | ⊢ + = (+g‘𝐺) |
| gsumzresunsn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| gsumzresunsn.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| gsumzresunsn.f | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| gsumzresunsn.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| gsumzresunsn.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumzresunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsumzresunsn.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) |
| gsumzresunsn.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| gsumzresunsn.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsumzresunsn.5 | ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) |
| Ref | Expression |
|---|---|
| gsumzresunsn | ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzresunsn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumzresunsn.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumzresunsn.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 4 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) | |
| 5 | gsumzresunsn.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 6 | gsumzresunsn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | gsumzresunsn.5 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) | |
| 8 | df-ima 5667 | . . . . 5 ⊢ (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝐹 ↾ (𝐴 ∪ {𝑋})) | |
| 9 | gsumzresunsn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | |
| 10 | gsumzresunsn.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 11 | gsumzresunsn.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
| 12 | 11 | snssd 4785 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝐶) |
| 13 | 10, 12 | unssd 4167 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∪ {𝑋}) ⊆ 𝐶) |
| 14 | 9, 13 | feqresmpt 6948 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∪ {𝑋})) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
| 15 | 14 | rneqd 5918 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ↾ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
| 16 | 8, 15 | eqtrid 2782 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
| 17 | 16 | fveq2d 6880 | . . . 4 ⊢ (𝜑 → (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋}))) = (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
| 18 | 7, 16, 17 | 3sstr3d 4013 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) ⊆ (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
| 19 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐵) |
| 20 | 10 | sselda 3958 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
| 21 | 19, 20 | ffvelcdmd 7075 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 22 | gsumzresunsn.2 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) | |
| 23 | gsumzresunsn.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 25 | 24 | fveq2d 6880 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 26 | gsumzresunsn.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 27 | 25, 26 | eqtr4di 2788 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = 𝑌) |
| 28 | 1, 2, 3, 4, 5, 6, 18, 21, 11, 22, 23, 27 | gsumzunsnd 19937 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
| 29 | 14 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
| 30 | 9, 10 | feqresmpt 6948 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 31 | 30 | oveq2d 7421 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)))) |
| 32 | 31 | oveq1d 7420 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
| 33 | 28, 29, 32 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 ran crn 5655 ↾ cres 5656 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 Basecbs 17228 +gcplusg 17271 Σg cgsu 17454 Mndcmnd 18712 Cntzccntz 19298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 |
| This theorem is referenced by: rprmdvdsprod 33549 |
| Copyright terms: Public domain | W3C validator |