![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumzresunsn | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
gsumzresunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzresunsn.p | ⊢ + = (+g‘𝐺) |
gsumzresunsn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzresunsn.y | ⊢ 𝑌 = (𝐹‘𝑋) |
gsumzresunsn.f | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
gsumzresunsn.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
gsumzresunsn.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzresunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzresunsn.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) |
gsumzresunsn.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
gsumzresunsn.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzresunsn.5 | ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) |
Ref | Expression |
---|---|
gsumzresunsn | ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzresunsn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumzresunsn.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumzresunsn.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | eqid 2725 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) | |
5 | gsumzresunsn.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzresunsn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | gsumzresunsn.5 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) | |
8 | df-ima 5691 | . . . . 5 ⊢ (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝐹 ↾ (𝐴 ∪ {𝑋})) | |
9 | gsumzresunsn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | |
10 | gsumzresunsn.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | gsumzresunsn.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
12 | 11 | snssd 4814 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝐶) |
13 | 10, 12 | unssd 4184 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∪ {𝑋}) ⊆ 𝐶) |
14 | 9, 13 | feqresmpt 6967 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∪ {𝑋})) = (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
15 | 14 | rneqd 5940 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ↾ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
16 | 8, 15 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) = ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) |
17 | 16 | fveq2d 6900 | . . . 4 ⊢ (𝜑 → (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋}))) = (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
18 | 7, 16, 17 | 3sstr3d 4023 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)) ⊆ (𝑍‘ran (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
19 | 9 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐵) |
20 | 10 | sselda 3976 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
21 | 19, 20 | ffvelcdmd 7094 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
22 | gsumzresunsn.2 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) | |
23 | gsumzresunsn.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
24 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
25 | 24 | fveq2d 6900 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
26 | gsumzresunsn.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
27 | 25, 26 | eqtr4di 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = 𝑌) |
28 | 1, 2, 3, 4, 5, 6, 18, 21, 11, 22, 23, 27 | gsumzunsnd 19928 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥))) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
29 | 14 | oveq2d 7435 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∪ {𝑋}) ↦ (𝐹‘𝑥)))) |
30 | 9, 10 | feqresmpt 6967 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
31 | 30 | oveq2d 7435 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)))) |
32 | 31 | oveq1d 7434 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌) = ((𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) + 𝑌)) |
33 | 28, 29, 32 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3942 ⊆ wss 3944 {csn 4630 ↦ cmpt 5232 ran crn 5679 ↾ cres 5680 “ cima 5681 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 Basecbs 17188 +gcplusg 17241 Σg cgsu 17430 Mndcmnd 18702 Cntzccntz 19283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14008 df-hash 14331 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-0g 17431 df-gsum 17432 df-mre 17574 df-mrc 17575 df-acs 17577 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-submnd 18749 df-mulg 19037 df-cntz 19285 df-cmn 19754 |
This theorem is referenced by: rprmdvdsprod 33351 |
Copyright terms: Public domain | W3C validator |