![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdsn | Structured version Visualization version GIF version |
Description: Value of the map defined by df-mapd 40963 at the span of a singleton. (Contributed by NM, 16-Feb-2015.) |
Ref | Expression |
---|---|
mapdsn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdsn.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdsn.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdsn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdsn.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdsn.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdsn.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdsn.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdsn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdsn.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
mapdsn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdsn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdsn.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2731 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
4 | mapdsn.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
5 | mapdsn.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
6 | mapdsn.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
7 | mapdsn.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | mapdsn.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 8 | dvhlmod 40448 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | mapdsn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | mapdsn.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdsn.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
13 | 11, 3, 12 | lspsncl 20820 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
14 | 9, 10, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | mapdval 40966 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))}) |
16 | 8 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | 10 | snssd 4812 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
18 | 11, 12 | lspssv 20826 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉) |
19 | 9, 17, 18 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑉) |
20 | 19 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑉) |
21 | simprr 770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) | |
22 | 1, 2, 11, 6 | dochss 40703 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋}) ⊆ 𝑉 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
23 | 16, 20, 21, 22 | syl3anc 1370 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
24 | 1, 2, 6, 11, 12, 8, 17 | dochocsp 40717 | . . . . . 6 ⊢ (𝜑 → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
25 | 24 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
26 | simprl 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) | |
27 | 23, 25, 26 | 3sstr3d 4028 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) |
28 | 8 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simplr 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) | |
30 | 10 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑋 ∈ 𝑉) |
31 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) | |
32 | 1, 6, 2, 11, 4, 5, 28, 29, 30, 31 | lcfl9a 40843 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
33 | 9 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑈 ∈ LMod) |
34 | 11, 4, 5, 33, 29 | lkrssv 38433 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐿‘𝑓) ⊆ 𝑉) |
35 | 1, 2, 11, 6 | dochss 40703 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑓) ⊆ 𝑉 ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
36 | 28, 34, 31, 35 | syl3anc 1370 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
37 | 1, 2, 6, 11, 12, 8, 10 | dochocsn 40719 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
38 | 37 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
39 | 36, 38 | sseqtrd 4022 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) |
40 | 32, 39 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) |
41 | 27, 40 | impbida 798 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) ↔ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓))) |
42 | 41 | rabbidva 3438 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))} = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
43 | 15, 42 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ⊆ wss 3948 {csn 4628 ‘cfv 6543 Basecbs 17151 LModclmod 20702 LSubSpclss 20774 LSpanclspn 20814 LFnlclfn 38394 LKerclk 38422 HLchlt 38687 LHypclh 39322 DVecHcdvh 40416 ocHcoch 40685 mapdcmpd 40962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38313 df-lshyp 38314 df-lfl 38395 df-lkr 38423 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-llines 38836 df-lplanes 38837 df-lvols 38838 df-lines 38839 df-psubsp 38841 df-pmap 38842 df-padd 39134 df-lhyp 39326 df-laut 39327 df-ldil 39442 df-ltrn 39443 df-trl 39497 df-tgrp 40081 df-tendo 40093 df-edring 40095 df-dveca 40341 df-disoa 40367 df-dvech 40417 df-dib 40477 df-dic 40511 df-dih 40567 df-doch 40686 df-djh 40733 df-mapd 40963 |
This theorem is referenced by: mapdsn2 40980 hdmaplkr 41251 |
Copyright terms: Public domain | W3C validator |