| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdsn | Structured version Visualization version GIF version | ||
| Description: Value of the map defined by df-mapd 41568 at the span of a singleton. (Contributed by NM, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| mapdsn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdsn.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdsn.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdsn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdsn.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdsn.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdsn.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdsn.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdsn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdsn.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| mapdsn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdsn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdsn.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | eqid 2734 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 4 | mapdsn.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 5 | mapdsn.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 6 | mapdsn.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 7 | mapdsn.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 8 | mapdsn.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 1, 2, 8 | dvhlmod 41053 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | mapdsn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | mapdsn.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 12 | mapdsn.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 13 | 11, 3, 12 | lspsncl 20948 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 14 | 9, 10, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | mapdval 41571 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))}) |
| 16 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | 10 | snssd 4791 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 18 | 11, 12 | lspssv 20954 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉) |
| 19 | 9, 17, 18 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑉) |
| 20 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑉) |
| 21 | simprr 772 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) | |
| 22 | 1, 2, 11, 6 | dochss 41308 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋}) ⊆ 𝑉 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
| 23 | 16, 20, 21, 22 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
| 24 | 1, 2, 6, 11, 12, 8, 17 | dochocsp 41322 | . . . . . 6 ⊢ (𝜑 → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
| 25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
| 26 | simprl 770 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) | |
| 27 | 23, 25, 26 | 3sstr3d 4020 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) |
| 28 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 29 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) | |
| 30 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑋 ∈ 𝑉) |
| 31 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) | |
| 32 | 1, 6, 2, 11, 4, 5, 28, 29, 30, 31 | lcfl9a 41448 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
| 33 | 9 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑈 ∈ LMod) |
| 34 | 11, 4, 5, 33, 29 | lkrssv 39038 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐿‘𝑓) ⊆ 𝑉) |
| 35 | 1, 2, 11, 6 | dochss 41308 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑓) ⊆ 𝑉 ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
| 36 | 28, 34, 31, 35 | syl3anc 1372 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
| 37 | 1, 2, 6, 11, 12, 8, 10 | dochocsn 41324 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
| 38 | 37 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
| 39 | 36, 38 | sseqtrd 4002 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) |
| 40 | 32, 39 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) |
| 41 | 27, 40 | impbida 800 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) ↔ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓))) |
| 42 | 41 | rabbidva 3427 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))} = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
| 43 | 15, 42 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3420 ⊆ wss 3933 {csn 4608 ‘cfv 6542 Basecbs 17230 LModclmod 20831 LSubSpclss 20902 LSpanclspn 20942 LFnlclfn 38999 LKerclk 39027 HLchlt 39292 LHypclh 39927 DVecHcdvh 41021 ocHcoch 41290 mapdcmpd 41567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-undef 8281 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-0g 17462 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cntz 19309 df-lsm 19627 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-drng 20704 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lsatoms 38918 df-lshyp 38919 df-lfl 39000 df-lkr 39028 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 df-tgrp 40686 df-tendo 40698 df-edring 40700 df-dveca 40946 df-disoa 40972 df-dvech 41022 df-dib 41082 df-dic 41116 df-dih 41172 df-doch 41291 df-djh 41338 df-mapd 41568 |
| This theorem is referenced by: mapdsn2 41585 hdmaplkr 41856 |
| Copyright terms: Public domain | W3C validator |