Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdsn | Structured version Visualization version GIF version |
Description: Value of the map defined by df-mapd 39376 at the span of a singleton. (Contributed by NM, 16-Feb-2015.) |
Ref | Expression |
---|---|
mapdsn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdsn.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdsn.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdsn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdsn.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdsn.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdsn.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdsn.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdsn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdsn.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
mapdsn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdsn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdsn.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2737 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
4 | mapdsn.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
5 | mapdsn.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
6 | mapdsn.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
7 | mapdsn.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | mapdsn.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 8 | dvhlmod 38861 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | mapdsn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | mapdsn.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdsn.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
13 | 11, 3, 12 | lspsncl 20014 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
14 | 9, 10, 13 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | mapdval 39379 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))}) |
16 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | 10 | snssd 4722 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
18 | 11, 12 | lspssv 20020 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉) |
19 | 9, 17, 18 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑉) |
20 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑉) |
21 | simprr 773 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) | |
22 | 1, 2, 11, 6 | dochss 39116 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋}) ⊆ 𝑉 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
23 | 16, 20, 21, 22 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) ⊆ (𝑂‘(𝑂‘(𝐿‘𝑓)))) |
24 | 1, 2, 6, 11, 12, 8, 17 | dochocsp 39130 | . . . . . 6 ⊢ (𝜑 → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑁‘{𝑋})) = (𝑂‘{𝑋})) |
26 | simprl 771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) | |
27 | 23, 25, 26 | 3sstr3d 3947 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) |
28 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) | |
30 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑋 ∈ 𝑉) |
31 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) | |
32 | 1, 6, 2, 11, 4, 5, 28, 29, 30, 31 | lcfl9a 39256 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
33 | 9 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → 𝑈 ∈ LMod) |
34 | 11, 4, 5, 33, 29 | lkrssv 36847 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝐿‘𝑓) ⊆ 𝑉) |
35 | 1, 2, 11, 6 | dochss 39116 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑓) ⊆ 𝑉 ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
36 | 28, 34, 31, 35 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑂‘(𝑂‘{𝑋}))) |
37 | 1, 2, 6, 11, 12, 8, 10 | dochocsn 39132 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
38 | 37 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝑂‘{𝑋})) = (𝑁‘{𝑋})) |
39 | 36, 38 | sseqtrd 3941 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) |
40 | 32, 39 | jca 515 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))) |
41 | 27, 40 | impbida 801 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋})) ↔ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓))) |
42 | 41 | rabbidva 3388 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ (𝑁‘{𝑋}))} = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
43 | 15, 42 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓 ∈ 𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿‘𝑓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 ⊆ wss 3866 {csn 4541 ‘cfv 6380 Basecbs 16760 LModclmod 19899 LSubSpclss 19968 LSpanclspn 20008 LFnlclfn 36808 LKerclk 36836 HLchlt 37101 LHypclh 37735 DVecHcdvh 38829 ocHcoch 39098 mapdcmpd 39375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-undef 8015 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-0g 16946 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lsatoms 36727 df-lshyp 36728 df-lfl 36809 df-lkr 36837 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 df-tgrp 38494 df-tendo 38506 df-edring 38508 df-dveca 38754 df-disoa 38780 df-dvech 38830 df-dib 38890 df-dic 38924 df-dih 38980 df-doch 39099 df-djh 39146 df-mapd 39376 |
This theorem is referenced by: mapdsn2 39393 hdmaplkr 39664 |
Copyright terms: Public domain | W3C validator |