| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acosbnd | Structured version Visualization version GIF version | ||
| Description: The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| acosbnd | ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval 26850 | . . . 4 ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | |
| 2 | 1 | fveq2d 6885 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) = (ℜ‘((π / 2) − (arcsin‘𝐴)))) |
| 3 | halfpire 26430 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 4 | 3 | recni 11254 | . . . . 5 ⊢ (π / 2) ∈ ℂ |
| 5 | asincl 26840 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
| 6 | resub 15151 | . . . . 5 ⊢ (((π / 2) ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴)))) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴)))) |
| 8 | rere 15146 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2)) | |
| 9 | 3, 8 | ax-mp 5 | . . . . 5 ⊢ (ℜ‘(π / 2)) = (π / 2) |
| 10 | 9 | oveq1i 7420 | . . . 4 ⊢ ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴))) = ((π / 2) − (ℜ‘(arcsin‘𝐴))) |
| 11 | 7, 10 | eqtrdi 2787 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((π / 2) − (ℜ‘(arcsin‘𝐴)))) |
| 12 | 2, 11 | eqtrd 2771 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) = ((π / 2) − (ℜ‘(arcsin‘𝐴)))) |
| 13 | 5 | recld 15218 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ ℝ) |
| 14 | resubcl 11552 | . . . 4 ⊢ (((π / 2) ∈ ℝ ∧ (ℜ‘(arcsin‘𝐴)) ∈ ℝ) → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ) | |
| 15 | 3, 13, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ) |
| 16 | asinbnd 26866 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | |
| 17 | neghalfpire 26431 | . . . . . . 7 ⊢ -(π / 2) ∈ ℝ | |
| 18 | 17, 3 | elicc2i 13434 | . . . . . 6 ⊢ ((ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℜ‘(arcsin‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℜ‘(arcsin‘𝐴)) ∧ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2))) |
| 19 | 16, 18 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((ℜ‘(arcsin‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℜ‘(arcsin‘𝐴)) ∧ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2))) |
| 20 | 19 | simp3d 1144 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ≤ (π / 2)) |
| 21 | subge0 11755 | . . . . 5 ⊢ (((π / 2) ∈ ℝ ∧ (ℜ‘(arcsin‘𝐴)) ∈ ℝ) → (0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ↔ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2))) | |
| 22 | 3, 13, 21 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ↔ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2))) |
| 23 | 20, 22 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴)))) |
| 24 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (π / 2) ∈ ℝ) |
| 25 | pire 26423 | . . . . 5 ⊢ π ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → π ∈ ℝ) |
| 27 | 25 | recni 11254 | . . . . . 6 ⊢ π ∈ ℂ |
| 28 | 17 | recni 11254 | . . . . . 6 ⊢ -(π / 2) ∈ ℂ |
| 29 | 27, 4 | negsubi 11566 | . . . . . . 7 ⊢ (π + -(π / 2)) = (π − (π / 2)) |
| 30 | pidiv2halves 26433 | . . . . . . . 8 ⊢ ((π / 2) + (π / 2)) = π | |
| 31 | 27, 4, 4, 30 | subaddrii 11577 | . . . . . . 7 ⊢ (π − (π / 2)) = (π / 2) |
| 32 | 29, 31 | eqtri 2759 | . . . . . 6 ⊢ (π + -(π / 2)) = (π / 2) |
| 33 | 4, 27, 28, 32 | subaddrii 11577 | . . . . 5 ⊢ ((π / 2) − π) = -(π / 2) |
| 34 | 19 | simp2d 1143 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(π / 2) ≤ (ℜ‘(arcsin‘𝐴))) |
| 35 | 33, 34 | eqbrtrid 5159 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((π / 2) − π) ≤ (ℜ‘(arcsin‘𝐴))) |
| 36 | 24, 26, 13, 35 | subled 11845 | . . 3 ⊢ (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ≤ π) |
| 37 | 0re 11242 | . . . 4 ⊢ 0 ∈ ℝ | |
| 38 | 37, 25 | elicc2i 13434 | . . 3 ⊢ (((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ (0[,]π) ↔ (((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ ∧ 0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∧ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ≤ π)) |
| 39 | 15, 23, 36, 38 | syl3anbrc 1344 | . 2 ⊢ (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ (0[,]π)) |
| 40 | 12, 39 | eqeltrd 2835 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 − cmin 11471 -cneg 11472 / cdiv 11899 2c2 12300 [,]cicc 13370 ℜcre 15121 πcpi 16087 arcsincasin 26829 arccoscacos 26830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 df-asin 26832 df-acos 26833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |