MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acosbnd Structured version   Visualization version   GIF version

Theorem acosbnd 26867
Description: The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
acosbnd (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π))

Proof of Theorem acosbnd
StepHypRef Expression
1 acosval 26850 . . . 4 (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))
21fveq2d 6885 . . 3 (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) = (ℜ‘((π / 2) − (arcsin‘𝐴))))
3 halfpire 26430 . . . . . 6 (π / 2) ∈ ℝ
43recni 11254 . . . . 5 (π / 2) ∈ ℂ
5 asincl 26840 . . . . 5 (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ)
6 resub 15151 . . . . 5 (((π / 2) ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴))))
74, 5, 6sylancr 587 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴))))
8 rere 15146 . . . . . 6 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
93, 8ax-mp 5 . . . . 5 (ℜ‘(π / 2)) = (π / 2)
109oveq1i 7420 . . . 4 ((ℜ‘(π / 2)) − (ℜ‘(arcsin‘𝐴))) = ((π / 2) − (ℜ‘(arcsin‘𝐴)))
117, 10eqtrdi 2787 . . 3 (𝐴 ∈ ℂ → (ℜ‘((π / 2) − (arcsin‘𝐴))) = ((π / 2) − (ℜ‘(arcsin‘𝐴))))
122, 11eqtrd 2771 . 2 (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) = ((π / 2) − (ℜ‘(arcsin‘𝐴))))
135recld 15218 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ ℝ)
14 resubcl 11552 . . . 4 (((π / 2) ∈ ℝ ∧ (ℜ‘(arcsin‘𝐴)) ∈ ℝ) → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ)
153, 13, 14sylancr 587 . . 3 (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ)
16 asinbnd 26866 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
17 neghalfpire 26431 . . . . . . 7 -(π / 2) ∈ ℝ
1817, 3elicc2i 13434 . . . . . 6 ((ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℜ‘(arcsin‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℜ‘(arcsin‘𝐴)) ∧ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2)))
1916, 18sylib 218 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘(arcsin‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℜ‘(arcsin‘𝐴)) ∧ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2)))
2019simp3d 1144 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ≤ (π / 2))
21 subge0 11755 . . . . 5 (((π / 2) ∈ ℝ ∧ (ℜ‘(arcsin‘𝐴)) ∈ ℝ) → (0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ↔ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2)))
223, 13, 21sylancr 587 . . . 4 (𝐴 ∈ ℂ → (0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ↔ (ℜ‘(arcsin‘𝐴)) ≤ (π / 2)))
2320, 22mpbird 257 . . 3 (𝐴 ∈ ℂ → 0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))))
243a1i 11 . . . 4 (𝐴 ∈ ℂ → (π / 2) ∈ ℝ)
25 pire 26423 . . . . 5 π ∈ ℝ
2625a1i 11 . . . 4 (𝐴 ∈ ℂ → π ∈ ℝ)
2725recni 11254 . . . . . 6 π ∈ ℂ
2817recni 11254 . . . . . 6 -(π / 2) ∈ ℂ
2927, 4negsubi 11566 . . . . . . 7 (π + -(π / 2)) = (π − (π / 2))
30 pidiv2halves 26433 . . . . . . . 8 ((π / 2) + (π / 2)) = π
3127, 4, 4, 30subaddrii 11577 . . . . . . 7 (π − (π / 2)) = (π / 2)
3229, 31eqtri 2759 . . . . . 6 (π + -(π / 2)) = (π / 2)
334, 27, 28, 32subaddrii 11577 . . . . 5 ((π / 2) − π) = -(π / 2)
3419simp2d 1143 . . . . 5 (𝐴 ∈ ℂ → -(π / 2) ≤ (ℜ‘(arcsin‘𝐴)))
3533, 34eqbrtrid 5159 . . . 4 (𝐴 ∈ ℂ → ((π / 2) − π) ≤ (ℜ‘(arcsin‘𝐴)))
3624, 26, 13, 35subled 11845 . . 3 (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ≤ π)
37 0re 11242 . . . 4 0 ∈ ℝ
3837, 25elicc2i 13434 . . 3 (((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ (0[,]π) ↔ (((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ ℝ ∧ 0 ≤ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∧ ((π / 2) − (ℜ‘(arcsin‘𝐴))) ≤ π))
3915, 23, 36, 38syl3anbrc 1344 . 2 (𝐴 ∈ ℂ → ((π / 2) − (ℜ‘(arcsin‘𝐴))) ∈ (0[,]π))
4012, 39eqeltrd 2835 1 (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   + caddc 11137  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  [,]cicc 13370  cre 15121  πcpi 16087  arcsincasin 26829  arccoscacos 26830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-asin 26832  df-acos 26833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator