MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acoscos Structured version   Visualization version   GIF version

Theorem acoscos 26801
Description: The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
acoscos ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)

Proof of Theorem acoscos
StepHypRef Expression
1 coscl 16036 . . . 4 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) ∈ ℂ)
3 acosval 26791 . . 3 ((cos‘𝐴) ∈ ℂ → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
5 picn 26365 . . . . . . . . 9 π ∈ ℂ
6 halfcl 12350 . . . . . . . . 9 (π ∈ ℂ → (π / 2) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . 8 (π / 2) ∈ ℂ
8 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 𝐴 ∈ ℂ)
9 nncan 11393 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
107, 8, 9sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
1110fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
12 subcl 11362 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
137, 8, 12sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) ∈ ℂ)
14 coshalfpim 26402 . . . . . . 7 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1611, 15eqtr3d 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
1716fveq2d 6826 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) = (arcsin‘(sin‘((π / 2) − 𝐴))))
18 halfpire 26371 . . . . . . . . 9 (π / 2) ∈ ℝ
1918recni 11129 . . . . . . . 8 (π / 2) ∈ ℂ
20 resub 15034 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
2119, 8, 20sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
22 rere 15029 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
2318, 22ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
2423oveq1i 7359 . . . . . . 7 ((ℜ‘(π / 2)) − (ℜ‘𝐴)) = ((π / 2) − (ℜ‘𝐴))
2521, 24eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((π / 2) − (ℜ‘𝐴)))
26 recl 15017 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) ∈ ℝ)
28 resubcl 11428 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
2918, 27, 28sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
3018a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (π / 2) ∈ ℝ)
31 neghalfpire 26372 . . . . . . . . 9 -(π / 2) ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) ∈ ℝ)
33 eliooord 13308 . . . . . . . . . . 11 ((ℜ‘𝐴) ∈ (0(,)π) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3433adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3534simprd 495 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < π)
3619, 19subnegi 11443 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
37 pidiv2halves 26374 . . . . . . . . . 10 ((π / 2) + (π / 2)) = π
3836, 37eqtri 2752 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
3935, 38breqtrrdi 5134 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < ((π / 2) − -(π / 2)))
4027, 30, 32, 39ltsub13d 11726 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) < ((π / 2) − (ℜ‘𝐴)))
4134simpld 494 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 0 < (ℜ‘𝐴))
42 ltsubpos 11612 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4327, 18, 42sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4441, 43mpbid 232 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) < (π / 2))
4531rexri 11173 . . . . . . . 8 -(π / 2) ∈ ℝ*
4618rexri 11173 . . . . . . . 8 (π / 2) ∈ ℝ*
47 elioo2 13289 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2))))
4845, 46, 47mp2an 692 . . . . . . 7 (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4929, 40, 44, 48syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
5025, 49eqeltrd 2828 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2)))
51 asinsin 26800 . . . . 5 ((((π / 2) − 𝐴) ∈ ℂ ∧ (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5213, 50, 51syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5317, 52eqtr2d 2765 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)))
54 asincl 26781 . . . . 5 ((cos‘𝐴) ∈ ℂ → (arcsin‘(cos‘𝐴)) ∈ ℂ)
552, 54syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) ∈ ℂ)
56 subsub23 11368 . . . 4 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (arcsin‘(cos‘𝐴)) ∈ ℂ) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5719, 8, 55, 56mp3an2i 1468 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5853, 57mpbid 232 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴)
594, 58eqtrd 2764 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   + caddc 11012  *cxr 11148   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  (,)cioo 13248  cre 15004  sincsin 15970  cosccos 15971  πcpi 15973  arcsincasin 26770  arccoscacos 26771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-asin 26773  df-acos 26774
This theorem is referenced by:  acoscosb  26806  acos1half  42335
  Copyright terms: Public domain W3C validator