MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acoscos Structured version   Visualization version   GIF version

Theorem acoscos 26830
Description: The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
acoscos ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)

Proof of Theorem acoscos
StepHypRef Expression
1 coscl 16036 . . . 4 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) ∈ ℂ)
3 acosval 26820 . . 3 ((cos‘𝐴) ∈ ℂ → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
5 picn 26394 . . . . . . . . 9 π ∈ ℂ
6 halfcl 12347 . . . . . . . . 9 (π ∈ ℂ → (π / 2) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . 8 (π / 2) ∈ ℂ
8 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 𝐴 ∈ ℂ)
9 nncan 11390 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
107, 8, 9sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
1110fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
12 subcl 11359 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
137, 8, 12sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) ∈ ℂ)
14 coshalfpim 26431 . . . . . . 7 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1611, 15eqtr3d 2768 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
1716fveq2d 6826 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) = (arcsin‘(sin‘((π / 2) − 𝐴))))
18 halfpire 26400 . . . . . . . . 9 (π / 2) ∈ ℝ
1918recni 11126 . . . . . . . 8 (π / 2) ∈ ℂ
20 resub 15034 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
2119, 8, 20sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
22 rere 15029 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
2318, 22ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
2423oveq1i 7356 . . . . . . 7 ((ℜ‘(π / 2)) − (ℜ‘𝐴)) = ((π / 2) − (ℜ‘𝐴))
2521, 24eqtrdi 2782 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((π / 2) − (ℜ‘𝐴)))
26 recl 15017 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) ∈ ℝ)
28 resubcl 11425 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
2918, 27, 28sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
3018a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (π / 2) ∈ ℝ)
31 neghalfpire 26401 . . . . . . . . 9 -(π / 2) ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) ∈ ℝ)
33 eliooord 13305 . . . . . . . . . . 11 ((ℜ‘𝐴) ∈ (0(,)π) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3433adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3534simprd 495 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < π)
3619, 19subnegi 11440 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
37 pidiv2halves 26403 . . . . . . . . . 10 ((π / 2) + (π / 2)) = π
3836, 37eqtri 2754 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
3935, 38breqtrrdi 5131 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < ((π / 2) − -(π / 2)))
4027, 30, 32, 39ltsub13d 11723 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) < ((π / 2) − (ℜ‘𝐴)))
4134simpld 494 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 0 < (ℜ‘𝐴))
42 ltsubpos 11609 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4327, 18, 42sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4441, 43mpbid 232 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) < (π / 2))
4531rexri 11170 . . . . . . . 8 -(π / 2) ∈ ℝ*
4618rexri 11170 . . . . . . . 8 (π / 2) ∈ ℝ*
47 elioo2 13286 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2))))
4845, 46, 47mp2an 692 . . . . . . 7 (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4929, 40, 44, 48syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
5025, 49eqeltrd 2831 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2)))
51 asinsin 26829 . . . . 5 ((((π / 2) − 𝐴) ∈ ℂ ∧ (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5213, 50, 51syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5317, 52eqtr2d 2767 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)))
54 asincl 26810 . . . . 5 ((cos‘𝐴) ∈ ℂ → (arcsin‘(cos‘𝐴)) ∈ ℂ)
552, 54syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) ∈ ℂ)
56 subsub23 11365 . . . 4 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (arcsin‘(cos‘𝐴)) ∈ ℂ) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5719, 8, 55, 56mp3an2i 1468 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5853, 57mpbid 232 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴)
594, 58eqtrd 2766 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009  *cxr 11145   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  (,)cioo 13245  cre 15004  sincsin 15970  cosccos 15971  πcpi 15973  arcsincasin 26799  arccoscacos 26800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-asin 26802  df-acos 26803
This theorem is referenced by:  acoscosb  26835  acos1half  42461
  Copyright terms: Public domain W3C validator