MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acoscos Structured version   Visualization version   GIF version

Theorem acoscos 25398
Description: The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
acoscos ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)

Proof of Theorem acoscos
StepHypRef Expression
1 coscl 15470 . . . 4 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) ∈ ℂ)
3 acosval 25388 . . 3 ((cos‘𝐴) ∈ ℂ → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
5 picn 24974 . . . . . . . . 9 π ∈ ℂ
6 halfcl 11851 . . . . . . . . 9 (π ∈ ℂ → (π / 2) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . 8 (π / 2) ∈ ℂ
8 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 𝐴 ∈ ℂ)
9 nncan 10904 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
107, 8, 9sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
1110fveq2d 6668 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
12 subcl 10874 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
137, 8, 12sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) ∈ ℂ)
14 coshalfpim 25010 . . . . . . 7 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1611, 15eqtr3d 2858 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
1716fveq2d 6668 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) = (arcsin‘(sin‘((π / 2) − 𝐴))))
18 halfpire 24979 . . . . . . . . 9 (π / 2) ∈ ℝ
1918recni 10644 . . . . . . . 8 (π / 2) ∈ ℂ
20 resub 14476 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
2119, 8, 20sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
22 rere 14471 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
2318, 22ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
2423oveq1i 7155 . . . . . . 7 ((ℜ‘(π / 2)) − (ℜ‘𝐴)) = ((π / 2) − (ℜ‘𝐴))
2521, 24syl6eq 2872 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((π / 2) − (ℜ‘𝐴)))
26 recl 14459 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) ∈ ℝ)
28 resubcl 10939 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
2918, 27, 28sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
3018a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (π / 2) ∈ ℝ)
31 neghalfpire 24980 . . . . . . . . 9 -(π / 2) ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) ∈ ℝ)
33 eliooord 12786 . . . . . . . . . . 11 ((ℜ‘𝐴) ∈ (0(,)π) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3433adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3534simprd 496 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < π)
3619, 19subnegi 10954 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
37 pidiv2halves 24982 . . . . . . . . . 10 ((π / 2) + (π / 2)) = π
3836, 37eqtri 2844 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
3935, 38breqtrrdi 5100 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < ((π / 2) − -(π / 2)))
4027, 30, 32, 39ltsub13d 11235 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) < ((π / 2) − (ℜ‘𝐴)))
4134simpld 495 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 0 < (ℜ‘𝐴))
42 ltsubpos 11121 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4327, 18, 42sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4441, 43mpbid 233 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) < (π / 2))
4531rexri 10688 . . . . . . . 8 -(π / 2) ∈ ℝ*
4618rexri 10688 . . . . . . . 8 (π / 2) ∈ ℝ*
47 elioo2 12769 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2))))
4845, 46, 47mp2an 688 . . . . . . 7 (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4929, 40, 44, 48syl3anbrc 1335 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
5025, 49eqeltrd 2913 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2)))
51 asinsin 25397 . . . . 5 ((((π / 2) − 𝐴) ∈ ℂ ∧ (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5213, 50, 51syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5317, 52eqtr2d 2857 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)))
54 asincl 25378 . . . . 5 ((cos‘𝐴) ∈ ℂ → (arcsin‘(cos‘𝐴)) ∈ ℂ)
552, 54syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) ∈ ℂ)
56 subsub23 10880 . . . 4 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (arcsin‘(cos‘𝐴)) ∈ ℂ) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5719, 8, 55, 56mp3an2i 1457 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5853, 57mpbid 233 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴)
594, 58eqtrd 2856 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5058  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526   + caddc 10529  *cxr 10663   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11681  (,)cioo 12728  cre 14446  sincsin 15407  cosccos 15408  πcpi 15410  arcsincasin 25367  arccoscacos 25368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-haus 21853  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-limc 24393  df-dv 24394  df-log 25067  df-asin 25370  df-acos 25371
This theorem is referenced by:  acoscosb  25403
  Copyright terms: Public domain W3C validator