MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acoscos Structured version   Visualization version   GIF version

Theorem acoscos 26836
Description: The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
acoscos ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)

Proof of Theorem acoscos
StepHypRef Expression
1 coscl 16071 . . . 4 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) ∈ ℂ)
3 acosval 26826 . . 3 ((cos‘𝐴) ∈ ℂ → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = ((π / 2) − (arcsin‘(cos‘𝐴))))
5 picn 26400 . . . . . . . . 9 π ∈ ℂ
6 halfcl 12384 . . . . . . . . 9 (π ∈ ℂ → (π / 2) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . 8 (π / 2) ∈ ℂ
8 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 𝐴 ∈ ℂ)
9 nncan 11427 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
107, 8, 9sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
1110fveq2d 6844 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
12 subcl 11396 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
137, 8, 12sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) ∈ ℂ)
14 coshalfpim 26437 . . . . . . 7 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
1611, 15eqtr3d 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
1716fveq2d 6844 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) = (arcsin‘(sin‘((π / 2) − 𝐴))))
18 halfpire 26406 . . . . . . . . 9 (π / 2) ∈ ℝ
1918recni 11164 . . . . . . . 8 (π / 2) ∈ ℂ
20 resub 15069 . . . . . . . 8 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
2119, 8, 20sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) − (ℜ‘𝐴)))
22 rere 15064 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
2318, 22ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
2423oveq1i 7379 . . . . . . 7 ((ℜ‘(π / 2)) − (ℜ‘𝐴)) = ((π / 2) − (ℜ‘𝐴))
2521, 24eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((π / 2) − (ℜ‘𝐴)))
26 recl 15052 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) ∈ ℝ)
28 resubcl 11462 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
2918, 27, 28sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ)
3018a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (π / 2) ∈ ℝ)
31 neghalfpire 26407 . . . . . . . . 9 -(π / 2) ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) ∈ ℝ)
33 eliooord 13342 . . . . . . . . . . 11 ((ℜ‘𝐴) ∈ (0(,)π) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3433adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π))
3534simprd 495 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < π)
3619, 19subnegi 11477 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
37 pidiv2halves 26409 . . . . . . . . . 10 ((π / 2) + (π / 2)) = π
3836, 37eqtri 2752 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
3935, 38breqtrrdi 5144 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘𝐴) < ((π / 2) − -(π / 2)))
4027, 30, 32, 39ltsub13d 11760 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → -(π / 2) < ((π / 2) − (ℜ‘𝐴)))
4134simpld 494 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → 0 < (ℜ‘𝐴))
42 ltsubpos 11646 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4327, 18, 42sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (0 < (ℜ‘𝐴) ↔ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4441, 43mpbid 232 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) < (π / 2))
4531rexri 11208 . . . . . . . 8 -(π / 2) ∈ ℝ*
4618rexri 11208 . . . . . . . 8 (π / 2) ∈ ℝ*
47 elioo2 13323 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2))))
4845, 46, 47mp2an 692 . . . . . . 7 (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ (((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) < ((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) − (ℜ‘𝐴)) < (π / 2)))
4929, 40, 44, 48syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
5025, 49eqeltrd 2828 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2)))
51 asinsin 26835 . . . . 5 ((((π / 2) − 𝐴) ∈ ℂ ∧ (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5213, 50, 51syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴))
5317, 52eqtr2d 2765 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)))
54 asincl 26816 . . . . 5 ((cos‘𝐴) ∈ ℂ → (arcsin‘(cos‘𝐴)) ∈ ℂ)
552, 54syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arcsin‘(cos‘𝐴)) ∈ ℂ)
56 subsub23 11402 . . . 4 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (arcsin‘(cos‘𝐴)) ∈ ℂ) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5719, 8, 55, 56mp3an2i 1468 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴))
5853, 57mpbid 232 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴)
594, 58eqtrd 2764 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047  *cxr 11183   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  (,)cioo 13282  cre 15039  sincsin 16005  cosccos 16006  πcpi 16008  arcsincasin 26805  arccoscacos 26806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-asin 26808  df-acos 26809
This theorem is referenced by:  acoscosb  26841  acos1half  42339
  Copyright terms: Public domain W3C validator