Proof of Theorem acoscos
| Step | Hyp | Ref
| Expression |
| 1 | | coscl 16150 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) ∈
ℂ) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (cos‘𝐴) ∈ ℂ) |
| 3 | | acosval 26850 |
. . 3
⊢
((cos‘𝐴)
∈ ℂ → (arccos‘(cos‘𝐴)) = ((π / 2) −
(arcsin‘(cos‘𝐴)))) |
| 4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (arccos‘(cos‘𝐴)) = ((π / 2) −
(arcsin‘(cos‘𝐴)))) |
| 5 | | picn 26424 |
. . . . . . . . 9
⊢ π
∈ ℂ |
| 6 | | halfcl 12472 |
. . . . . . . . 9
⊢ (π
∈ ℂ → (π / 2) ∈ ℂ) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . 8
⊢ (π /
2) ∈ ℂ |
| 8 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → 𝐴 ∈
ℂ) |
| 9 | | nncan 11517 |
. . . . . . . 8
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴) |
| 10 | 7, 8, 9 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴) |
| 11 | 10 | fveq2d 6885 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴)) |
| 12 | | subcl 11486 |
. . . . . . . 8
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ) |
| 13 | 7, 8, 12 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − 𝐴) ∈ ℂ) |
| 14 | | coshalfpim 26461 |
. . . . . . 7
⊢ (((π /
2) − 𝐴) ∈
ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2)
− 𝐴))) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2)
− 𝐴))) |
| 16 | 11, 15 | eqtr3d 2773 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴))) |
| 17 | 16 | fveq2d 6885 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (arcsin‘(cos‘𝐴)) = (arcsin‘(sin‘((π / 2)
− 𝐴)))) |
| 18 | | halfpire 26430 |
. . . . . . . . 9
⊢ (π /
2) ∈ ℝ |
| 19 | 18 | recni 11254 |
. . . . . . . 8
⊢ (π /
2) ∈ ℂ |
| 20 | | resub 15151 |
. . . . . . . 8
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) −
(ℜ‘𝐴))) |
| 21 | 19, 8, 20 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((ℜ‘(π / 2)) −
(ℜ‘𝐴))) |
| 22 | | rere 15146 |
. . . . . . . . 9
⊢ ((π /
2) ∈ ℝ → (ℜ‘(π / 2)) = (π /
2)) |
| 23 | 18, 22 | ax-mp 5 |
. . . . . . . 8
⊢
(ℜ‘(π / 2)) = (π / 2) |
| 24 | 23 | oveq1i 7420 |
. . . . . . 7
⊢
((ℜ‘(π / 2)) − (ℜ‘𝐴)) = ((π / 2) − (ℜ‘𝐴)) |
| 25 | 21, 24 | eqtrdi 2787 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘((π / 2) − 𝐴)) = ((π / 2) − (ℜ‘𝐴))) |
| 26 | | recl 15134 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
| 27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘𝐴) ∈ ℝ) |
| 28 | | resubcl 11552 |
. . . . . . . 8
⊢ (((π /
2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((π / 2) −
(ℜ‘𝐴)) ∈
ℝ) |
| 29 | 18, 27, 28 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ ℝ) |
| 30 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (π / 2) ∈ ℝ) |
| 31 | | neghalfpire 26431 |
. . . . . . . . 9
⊢ -(π /
2) ∈ ℝ |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → -(π / 2) ∈ ℝ) |
| 33 | | eliooord 13427 |
. . . . . . . . . . 11
⊢
((ℜ‘𝐴)
∈ (0(,)π) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π)) |
| 34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < π)) |
| 35 | 34 | simprd 495 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘𝐴) < π) |
| 36 | 19, 19 | subnegi 11567 |
. . . . . . . . . 10
⊢ ((π /
2) − -(π / 2)) = ((π / 2) + (π / 2)) |
| 37 | | pidiv2halves 26433 |
. . . . . . . . . 10
⊢ ((π /
2) + (π / 2)) = π |
| 38 | 36, 37 | eqtri 2759 |
. . . . . . . . 9
⊢ ((π /
2) − -(π / 2)) = π |
| 39 | 35, 38 | breqtrrdi 5166 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘𝐴) < ((π / 2) − -(π /
2))) |
| 40 | 27, 30, 32, 39 | ltsub13d 11848 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → -(π / 2) < ((π / 2) − (ℜ‘𝐴))) |
| 41 | 34 | simpld 494 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → 0 < (ℜ‘𝐴)) |
| 42 | | ltsubpos 11734 |
. . . . . . . . 9
⊢
(((ℜ‘𝐴)
∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 <
(ℜ‘𝐴) ↔
((π / 2) − (ℜ‘𝐴)) < (π / 2))) |
| 43 | 27, 18, 42 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (0 < (ℜ‘𝐴) ↔ ((π / 2) −
(ℜ‘𝐴)) <
(π / 2))) |
| 44 | 41, 43 | mpbid 232 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − (ℜ‘𝐴)) < (π / 2)) |
| 45 | 31 | rexri 11298 |
. . . . . . . 8
⊢ -(π /
2) ∈ ℝ* |
| 46 | 18 | rexri 11298 |
. . . . . . . 8
⊢ (π /
2) ∈ ℝ* |
| 47 | | elioo2 13408 |
. . . . . . . 8
⊢ ((-(π
/ 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*)
→ (((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
(((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) <
((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) −
(ℜ‘𝐴)) <
(π / 2)))) |
| 48 | 45, 46, 47 | mp2an 692 |
. . . . . . 7
⊢ (((π /
2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
(((π / 2) − (ℜ‘𝐴)) ∈ ℝ ∧ -(π / 2) <
((π / 2) − (ℜ‘𝐴)) ∧ ((π / 2) −
(ℜ‘𝐴)) <
(π / 2))) |
| 49 | 29, 40, 44, 48 | syl3anbrc 1344 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − (ℜ‘𝐴)) ∈ (-(π / 2)(,)(π /
2))) |
| 50 | 25, 49 | eqeltrd 2835 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π /
2))) |
| 51 | | asinsin 26859 |
. . . . 5
⊢ ((((π
/ 2) − 𝐴) ∈
ℂ ∧ (ℜ‘((π / 2) − 𝐴)) ∈ (-(π / 2)(,)(π / 2))) →
(arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴)) |
| 52 | 13, 50, 51 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (arcsin‘(sin‘((π / 2) − 𝐴))) = ((π / 2) − 𝐴)) |
| 53 | 17, 52 | eqtr2d 2772 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴))) |
| 54 | | asincl 26840 |
. . . . 5
⊢
((cos‘𝐴)
∈ ℂ → (arcsin‘(cos‘𝐴)) ∈ ℂ) |
| 55 | 2, 54 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (arcsin‘(cos‘𝐴)) ∈ ℂ) |
| 56 | | subsub23 11492 |
. . . 4
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ ∧ (arcsin‘(cos‘𝐴)) ∈ ℂ) → (((π / 2)
− 𝐴) =
(arcsin‘(cos‘𝐴)) ↔ ((π / 2) −
(arcsin‘(cos‘𝐴))) = 𝐴)) |
| 57 | 19, 8, 55, 56 | mp3an2i 1468 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (((π / 2) − 𝐴) = (arcsin‘(cos‘𝐴)) ↔ ((π / 2) −
(arcsin‘(cos‘𝐴))) = 𝐴)) |
| 58 | 53, 57 | mpbid 232 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → ((π / 2) − (arcsin‘(cos‘𝐴))) = 𝐴) |
| 59 | 4, 58 | eqtrd 2771 |
1
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) |