Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq1 Structured version   Visualization version   GIF version

Theorem afveq1 47125
Description: Equality theorem for function value, analogous to fveq1 6859. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afveq1 (𝐹 = 𝐺 → (𝐹'''𝐴) = (𝐺'''𝐴))

Proof of Theorem afveq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2731 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2afveq12d 47124 1 (𝐹 = 𝐺 → (𝐹'''𝐴) = (𝐺'''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  '''cafv 47108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-iota 6466  df-fun 6515  df-fv 6521  df-aiota 47076  df-dfat 47110  df-afv 47111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator