Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1383 Structured version   Visualization version   GIF version

Theorem bnj1383 34843
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1383.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1383.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1383.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
Assertion
Ref Expression
bnj1383 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem bnj1383
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1383.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1383.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1383.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 biid 261 . 2 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
5 biid 261 . 2 (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ↔ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
6 biid 261 . 2 ((((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔) ↔ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
71, 2, 3, 4, 5, 6bnj1379 34842 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cin 3896  cop 4579   cuni 4856  dom cdm 5614  cres 5616  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  bnj1385  34844  bnj60  35074
  Copyright terms: Public domain W3C validator