Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1383 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1383.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1383.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1383.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
Ref | Expression |
---|---|
bnj1383 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1383.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1383.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1383.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | biid 260 | . 2 ⊢ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ↔ (𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴)) | |
5 | biid 260 | . 2 ⊢ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ↔ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓)) | |
6 | biid 260 | . 2 ⊢ ((((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔) ↔ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔)) | |
7 | 1, 2, 3, 4, 5, 6 | bnj1379 32810 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 〈cop 4567 ∪ cuni 4839 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: bnj1385 32812 bnj60 33042 |
Copyright terms: Public domain | W3C validator |