![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1383 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1383.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1383.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1383.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
Ref | Expression |
---|---|
bnj1383 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1383.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1383.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1383.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | biid 260 | . 2 ⊢ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴)) | |
5 | biid 260 | . 2 ⊢ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ↔ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)) | |
6 | biid 260 | . 2 ⊢ ((((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔) ↔ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔)) | |
7 | 1, 2, 3, 4, 5, 6 | bnj1379 33829 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3946 ⟨cop 4633 ∪ cuni 4907 dom cdm 5675 ↾ cres 5677 Fun wfun 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 |
This theorem is referenced by: bnj1385 33831 bnj60 34061 |
Copyright terms: Public domain | W3C validator |