![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1383 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1383.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1383.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1383.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
Ref | Expression |
---|---|
bnj1383 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1383.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1383.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1383.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | biid 253 | . 2 ⊢ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ↔ (𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴)) | |
5 | biid 253 | . 2 ⊢ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ↔ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓)) | |
6 | biid 253 | . 2 ⊢ ((((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔) ↔ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔)) | |
7 | 1, 2, 3, 4, 5, 6 | bnj1379 31418 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∩ cin 3768 〈cop 4374 ∪ cuni 4628 dom cdm 5312 ↾ cres 5314 Fun wfun 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-res 5324 df-iota 6064 df-fun 6103 df-fv 6109 |
This theorem is referenced by: bnj1385 31420 bnj60 31647 |
Copyright terms: Public domain | W3C validator |