![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1383 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1383.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1383.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1383.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
Ref | Expression |
---|---|
bnj1383 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1383.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1383.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1383.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | biid 261 | . 2 ⊢ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴)) | |
5 | biid 261 | . 2 ⊢ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ↔ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)) | |
6 | biid 261 | . 2 ⊢ ((((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔) ↔ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔)) | |
7 | 1, 2, 3, 4, 5, 6 | bnj1379 34370 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∩ cin 3942 ⟨cop 4629 ∪ cuni 4902 dom cdm 5669 ↾ cres 5671 Fun wfun 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6488 df-fun 6538 df-fv 6544 |
This theorem is referenced by: bnj1385 34372 bnj60 34602 |
Copyright terms: Public domain | W3C validator |