Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1383 Structured version   Visualization version   GIF version

Theorem bnj1383 32105
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1383.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1383.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1383.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
Assertion
Ref Expression
bnj1383 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem bnj1383
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1383.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1383.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1383.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 biid 263 . 2 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
5 biid 263 . 2 (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ↔ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
6 biid 263 . 2 ((((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔) ↔ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
71, 2, 3, 4, 5, 6bnj1379 32104 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cin 3937  cop 4575   cuni 4840  dom cdm 5557  cres 5559  Fun wfun 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-res 5569  df-iota 6316  df-fun 6359  df-fv 6365
This theorem is referenced by:  bnj1385  32106  bnj60  32336
  Copyright terms: Public domain W3C validator