Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1383 Structured version   Visualization version   GIF version

Theorem bnj1383 34371
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1383.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1383.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1383.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
Assertion
Ref Expression
bnj1383 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem bnj1383
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1383.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1383.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1383.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 biid 261 . 2 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
5 biid 261 . 2 (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ↔ ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
6 biid 261 . 2 ((((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔) ↔ (((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ∧ 𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓) ∧ 𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
71, 2, 3, 4, 5, 6bnj1379 34370 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  cin 3942  cop 4629   cuni 4902  dom cdm 5669  cres 5671  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544
This theorem is referenced by:  bnj1385  34372  bnj60  34602
  Copyright terms: Public domain W3C validator