Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Visualization version   GIF version

Theorem bnj168 32110
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 9040. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj168 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝐷(𝑚,𝑛)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
21bnj158 32109 . . . . . . . . 9 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
32anim2i 619 . . . . . . . 8 ((𝑛 ≠ 1o𝑛𝐷) → (𝑛 ≠ 1o ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4 r19.42v 3303 . . . . . . . 8 (∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚) ↔ (𝑛 ≠ 1o ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
53, 4sylibr 237 . . . . . . 7 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚))
6 neeq1 3049 . . . . . . . . . . 11 (𝑛 = suc 𝑚 → (𝑛 ≠ 1o ↔ suc 𝑚 ≠ 1o))
76biimpac 482 . . . . . . . . . 10 ((𝑛 ≠ 1o𝑛 = suc 𝑚) → suc 𝑚 ≠ 1o)
8 df-1o 8085 . . . . . . . . . . . . 13 1o = suc ∅
98eqeq2i 2811 . . . . . . . . . . . 12 (suc 𝑚 = 1o ↔ suc 𝑚 = suc ∅)
10 nnon 7566 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ On)
11 0elon 6212 . . . . . . . . . . . . 13 ∅ ∈ On
12 suc11 6262 . . . . . . . . . . . . 13 ((𝑚 ∈ On ∧ ∅ ∈ On) → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
1310, 11, 12sylancl 589 . . . . . . . . . . . 12 (𝑚 ∈ ω → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
149, 13syl5rbb 287 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑚 = ∅ ↔ suc 𝑚 = 1o))
1514necon3bid 3031 . . . . . . . . . 10 (𝑚 ∈ ω → (𝑚 ≠ ∅ ↔ suc 𝑚 ≠ 1o))
167, 15syl5ibr 249 . . . . . . . . 9 (𝑚 ∈ ω → ((𝑛 ≠ 1o𝑛 = suc 𝑚) → 𝑚 ≠ ∅))
1716ancld 554 . . . . . . . 8 (𝑚 ∈ ω → ((𝑛 ≠ 1o𝑛 = suc 𝑚) → ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅)))
1817reximia 3205 . . . . . . 7 (∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚) → ∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
195, 18syl 17 . . . . . 6 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
20 anass 472 . . . . . . 7 (((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2120rexbii 3210 . . . . . 6 (∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ ∃𝑚 ∈ ω (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2219, 21sylib 221 . . . . 5 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
23 simpr 488 . . . . 5 ((𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑛 = suc 𝑚𝑚 ≠ ∅))
2422, 23bnj31 32099 . . . 4 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅))
25 df-rex 3112 . . . 4 (∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅) ↔ ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2624, 25sylib 221 . . 3 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
27 simpr 488 . . . . . . 7 ((𝑛 = suc 𝑚𝑚 ≠ ∅) → 𝑚 ≠ ∅)
2827anim2i 619 . . . . . 6 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
291eleq2i 2881 . . . . . . 7 (𝑚𝐷𝑚 ∈ (ω ∖ {∅}))
30 eldifsn 4680 . . . . . . 7 (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
3129, 30bitr2i 279 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) ↔ 𝑚𝐷)
3228, 31sylib 221 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑚𝐷)
33 simprl 770 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑛 = suc 𝑚)
3432, 33jca 515 . . . 4 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚𝐷𝑛 = suc 𝑚))
3534eximi 1836 . . 3 (∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3626, 35syl 17 . 2 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
37 df-rex 3112 . 2 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3836, 37sylibr 237 1 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  cdif 3878  c0 4243  {csn 4525  Oncon0 6159  suc csuc 6161  ωcom 7560  1oc1o 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-om 7561  df-1o 8085
This theorem is referenced by:  bnj600  32301
  Copyright terms: Public domain W3C validator