Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Visualization version   GIF version

Theorem bnj168 31268
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 8708. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj168 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝐷(𝑚,𝑛)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
21bnj158 31267 . . . . . . . . 9 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
32anim2i 610 . . . . . . . 8 ((𝑛 ≠ 1𝑜𝑛𝐷) → (𝑛 ≠ 1𝑜 ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4 r19.42v 3239 . . . . . . . 8 (∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ↔ (𝑛 ≠ 1𝑜 ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
53, 4sylibr 225 . . . . . . 7 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚))
6 neeq1 2999 . . . . . . . . . . 11 (𝑛 = suc 𝑚 → (𝑛 ≠ 1𝑜 ↔ suc 𝑚 ≠ 1𝑜))
76biimpac 470 . . . . . . . . . 10 ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → suc 𝑚 ≠ 1𝑜)
8 df-1o 7768 . . . . . . . . . . . . 13 1𝑜 = suc ∅
98eqeq2i 2777 . . . . . . . . . . . 12 (suc 𝑚 = 1𝑜 ↔ suc 𝑚 = suc ∅)
10 nnon 7273 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ On)
11 0elon 5963 . . . . . . . . . . . . 13 ∅ ∈ On
12 suc11 6013 . . . . . . . . . . . . 13 ((𝑚 ∈ On ∧ ∅ ∈ On) → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
1310, 11, 12sylancl 580 . . . . . . . . . . . 12 (𝑚 ∈ ω → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
149, 13syl5rbb 275 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑚 = ∅ ↔ suc 𝑚 = 1𝑜))
1514necon3bid 2981 . . . . . . . . . 10 (𝑚 ∈ ω → (𝑚 ≠ ∅ ↔ suc 𝑚 ≠ 1𝑜))
167, 15syl5ibr 237 . . . . . . . . 9 (𝑚 ∈ ω → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → 𝑚 ≠ ∅))
1716ancld 546 . . . . . . . 8 (𝑚 ∈ ω → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅)))
1817reximia 3155 . . . . . . 7 (∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → ∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
195, 18syl 17 . . . . . 6 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
20 anass 460 . . . . . . 7 (((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2120rexbii 3188 . . . . . 6 (∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2219, 21sylib 209 . . . . 5 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
23 simpr 477 . . . . 5 ((𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑛 = suc 𝑚𝑚 ≠ ∅))
2422, 23bnj31 31257 . . . 4 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅))
25 df-rex 3061 . . . 4 (∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅) ↔ ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2624, 25sylib 209 . . 3 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
27 simpr 477 . . . . . . 7 ((𝑛 = suc 𝑚𝑚 ≠ ∅) → 𝑚 ≠ ∅)
2827anim2i 610 . . . . . 6 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
291eleq2i 2836 . . . . . . 7 (𝑚𝐷𝑚 ∈ (ω ∖ {∅}))
30 eldifsn 4474 . . . . . . 7 (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
3129, 30bitr2i 267 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) ↔ 𝑚𝐷)
3228, 31sylib 209 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑚𝐷)
33 simprl 787 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑛 = suc 𝑚)
3432, 33jca 507 . . . 4 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚𝐷𝑛 = suc 𝑚))
3534eximi 1929 . . 3 (∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3626, 35syl 17 . 2 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
37 df-rex 3061 . 2 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3836, 37sylibr 225 1 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  cdif 3731  c0 4081  {csn 4336  Oncon0 5910  suc csuc 5912  ωcom 7267  1𝑜c1o 7761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-tr 4914  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-om 7268  df-1o 7768
This theorem is referenced by:  bnj600  31458
  Copyright terms: Public domain W3C validator