Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Visualization version   GIF version

Theorem bnj168 34706
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 9661. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj168 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝐷(𝑚,𝑛)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
21bnj158 34705 . . . . . . . . 9 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
32anim2i 616 . . . . . . . 8 ((𝑛 ≠ 1o𝑛𝐷) → (𝑛 ≠ 1o ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4 r19.42v 3197 . . . . . . . 8 (∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚) ↔ (𝑛 ≠ 1o ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
53, 4sylibr 234 . . . . . . 7 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚))
6 neeq1 3009 . . . . . . . . . . 11 (𝑛 = suc 𝑚 → (𝑛 ≠ 1o ↔ suc 𝑚 ≠ 1o))
76biimpac 478 . . . . . . . . . 10 ((𝑛 ≠ 1o𝑛 = suc 𝑚) → suc 𝑚 ≠ 1o)
8 df-1o 8522 . . . . . . . . . . . . 13 1o = suc ∅
98eqeq2i 2753 . . . . . . . . . . . 12 (suc 𝑚 = 1o ↔ suc 𝑚 = suc ∅)
10 nnon 7909 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ On)
11 0elon 6449 . . . . . . . . . . . . 13 ∅ ∈ On
12 suc11 6502 . . . . . . . . . . . . 13 ((𝑚 ∈ On ∧ ∅ ∈ On) → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
1310, 11, 12sylancl 585 . . . . . . . . . . . 12 (𝑚 ∈ ω → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
149, 13bitr2id 284 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑚 = ∅ ↔ suc 𝑚 = 1o))
1514necon3bid 2991 . . . . . . . . . 10 (𝑚 ∈ ω → (𝑚 ≠ ∅ ↔ suc 𝑚 ≠ 1o))
167, 15imbitrrid 246 . . . . . . . . 9 (𝑚 ∈ ω → ((𝑛 ≠ 1o𝑛 = suc 𝑚) → 𝑚 ≠ ∅))
1716ancld 550 . . . . . . . 8 (𝑚 ∈ ω → ((𝑛 ≠ 1o𝑛 = suc 𝑚) → ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅)))
1817reximia 3087 . . . . . . 7 (∃𝑚 ∈ ω (𝑛 ≠ 1o𝑛 = suc 𝑚) → ∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
195, 18syl 17 . . . . . 6 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
20 anass 468 . . . . . . 7 (((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2120rexbii 3100 . . . . . 6 (∃𝑚 ∈ ω ((𝑛 ≠ 1o𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ ∃𝑚 ∈ ω (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2219, 21sylib 218 . . . . 5 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
23 simpr 484 . . . . 5 ((𝑛 ≠ 1o ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑛 = suc 𝑚𝑚 ≠ ∅))
2422, 23bnj31 34695 . . . 4 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅))
25 df-rex 3077 . . . 4 (∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅) ↔ ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2624, 25sylib 218 . . 3 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
27 simpr 484 . . . . . . 7 ((𝑛 = suc 𝑚𝑚 ≠ ∅) → 𝑚 ≠ ∅)
2827anim2i 616 . . . . . 6 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
291eleq2i 2836 . . . . . . 7 (𝑚𝐷𝑚 ∈ (ω ∖ {∅}))
30 eldifsn 4811 . . . . . . 7 (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
3129, 30bitr2i 276 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) ↔ 𝑚𝐷)
3228, 31sylib 218 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑚𝐷)
33 simprl 770 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑛 = suc 𝑚)
3432, 33jca 511 . . . 4 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚𝐷𝑛 = suc 𝑚))
3534eximi 1833 . . 3 (∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3626, 35syl 17 . 2 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
37 df-rex 3077 . 2 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3836, 37sylibr 234 1 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cdif 3973  c0 4352  {csn 4648  Oncon0 6395  suc csuc 6397  ωcom 7903  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904  df-1o 8522
This theorem is referenced by:  bnj600  34895
  Copyright terms: Public domain W3C validator