| Step | Hyp | Ref
| Expression |
| 1 | | lmdvg.3 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) |
| 2 | | nnuz 12836 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 3 | | 1zzd 12564 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → 1 ∈ ℤ) |
| 4 | | lmdvg.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) |
| 5 | | rge0ssre 13417 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
| 6 | | fss 6704 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ) |
| 7 | 4, 5, 6 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| 8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → 𝐹:ℕ⟶ℝ) |
| 9 | | lmdvg.2 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| 10 | 9 | ralrimiva 3125 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| 11 | | fveq2 6858 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝐹‘𝑘) = (𝐹‘𝑙)) |
| 12 | | fvoveq1 7410 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑙 + 1))) |
| 13 | 11, 12 | breq12d 5120 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1)))) |
| 14 | 13 | cbvralvw 3215 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ℕ (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ ∀𝑙 ∈ ℕ (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1))) |
| 15 | 10, 14 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑙 ∈ ℕ (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1))) |
| 16 | 15 | r19.21bi 3229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1))) |
| 17 | 16 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) ∧ 𝑙 ∈ ℕ) → (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1))) |
| 18 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) |
| 19 | | fveq2 6858 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) |
| 20 | 19 | breq1d 5117 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → ((𝐹‘𝑗) ≤ 𝑥 ↔ (𝐹‘𝑙) ≤ 𝑥)) |
| 21 | 20 | cbvralvw 3215 |
. . . . . . . . . . 11
⊢
(∀𝑗 ∈
ℕ (𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑙 ∈ ℕ (𝐹‘𝑙) ≤ 𝑥) |
| 22 | 21 | rexbii 3076 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
ℝ ∀𝑗 ∈
ℕ (𝐹‘𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹‘𝑙) ≤ 𝑥) |
| 23 | 18, 22 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹‘𝑙) ≤ 𝑥) |
| 24 | 2, 3, 8, 17, 23 | climsup 15636 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) |
| 25 | | nnex 12192 |
. . . . . . . . . . 11
⊢ ℕ
∈ V |
| 26 | | fex 7200 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶(0[,)+∞)
∧ ℕ ∈ V) → 𝐹 ∈ V) |
| 27 | 4, 25, 26 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
| 28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ V) |
| 29 | | ltso 11254 |
. . . . . . . . . . 11
⊢ < Or
ℝ |
| 30 | 29 | supex 9415 |
. . . . . . . . . 10
⊢ sup(ran
𝐹, ℝ, < ) ∈
V |
| 31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → sup(ran 𝐹, ℝ, < ) ∈
V) |
| 32 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) |
| 33 | | breldmg 5873 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ sup(ran 𝐹, ℝ, < ) ∈ V ∧
𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝
) |
| 34 | 28, 31, 32, 33 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ ) |
| 35 | 24, 34 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) → 𝐹 ∈ dom ⇝ ) |
| 36 | 1, 35 | mtand 815 |
. . . . . 6
⊢ (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) |
| 37 | | ralnex 3055 |
. . . . . 6
⊢
(∀𝑥 ∈
ℝ ¬ ∀𝑗
∈ ℕ (𝐹‘𝑗) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) |
| 38 | 36, 37 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) |
| 39 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 40 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐹:ℕ⟶ℝ) |
| 41 | 40 | ffvelcdmda 7056 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ ℝ) |
| 42 | 39, 41 | ltnled 11321 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹‘𝑗) ↔ ¬ (𝐹‘𝑗) ≤ 𝑥)) |
| 43 | 42 | rexbidva 3155 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗) ↔ ∃𝑗 ∈ ℕ ¬ (𝐹‘𝑗) ≤ 𝑥)) |
| 44 | | rexnal 3082 |
. . . . . . 7
⊢
(∃𝑗 ∈
ℕ ¬ (𝐹‘𝑗) ≤ 𝑥 ↔ ¬ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥) |
| 45 | 43, 44 | bitrdi 287 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗) ↔ ¬ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥)) |
| 46 | 45 | ralbidva 3154 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ≤ 𝑥)) |
| 47 | 38, 46 | mpbird 257 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗)) |
| 48 | 47 | r19.21bi 3229 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗)) |
| 49 | 39 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ) |
| 50 | 41 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ∈ ℝ) |
| 51 | 40 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:ℕ⟶ℝ) |
| 52 | | uznnssnn 12854 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ →
(ℤ≥‘𝑗) ⊆ ℕ) |
| 53 | 52 | ad3antlr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) →
(ℤ≥‘𝑗) ⊆ ℕ) |
| 54 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 55 | 53, 54 | sseldd 3947 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 56 | 51, 55 | ffvelcdmd 7057 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
| 57 | | simplr 768 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 < (𝐹‘𝑗)) |
| 58 | | simp-4l 782 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
| 59 | | simpllr 775 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) |
| 60 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 61 | 7 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝐹:ℕ⟶ℝ) |
| 62 | | fzssnn 13529 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗...𝑘) ⊆ ℕ) |
| 63 | 62 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝑗...𝑘) ⊆ ℕ) |
| 64 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ (𝑗...𝑘)) |
| 65 | 63, 64 | sseldd 3947 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ ℕ) |
| 66 | 61, 65 | ffvelcdmd 7057 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝐹‘𝑙) ∈ ℝ) |
| 67 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝜑) |
| 68 | | fzssnn 13529 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗...(𝑘 − 1)) ⊆
ℕ) |
| 69 | 68 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝑗...(𝑘 − 1)) ⊆
ℕ) |
| 70 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ (𝑗...(𝑘 − 1))) |
| 71 | 69, 70 | sseldd 3947 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ ℕ) |
| 72 | 67, 71, 16 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘𝑙) ≤ (𝐹‘(𝑙 + 1))) |
| 73 | 60, 66, 72 | monoord 13997 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ≤ (𝐹‘𝑘)) |
| 74 | 58, 59, 54, 73 | syl21anc 837 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ≤ (𝐹‘𝑘)) |
| 75 | 49, 50, 56, 57, 74 | ltletrd 11334 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 < (𝐹‘𝑘)) |
| 76 | 75 | ralrimiva 3125 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹‘𝑗)) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) |
| 77 | 76 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹‘𝑗) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘))) |
| 78 | 77 | reximdva 3146 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹‘𝑗) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘))) |
| 79 | 48, 78 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) |
| 80 | 79 | ralrimiva 3125 |
1
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) |