Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdvg Structured version   Visualization version   GIF version

Theorem lmdvg 33920
Description: If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.)
Hypotheses
Ref Expression
lmdvg.1 (𝜑𝐹:ℕ⟶(0[,)+∞))
lmdvg.2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
lmdvg.3 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
lmdvg (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝜑,𝑗,𝑘,𝑥

Proof of Theorem lmdvg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lmdvg.3 . . . . . . 7 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
2 nnuz 12778 . . . . . . . . 9 ℕ = (ℤ‘1)
3 1zzd 12506 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 1 ∈ ℤ)
4 lmdvg.1 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(0[,)+∞))
5 rge0ssre 13359 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
6 fss 6668 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹:ℕ⟶ℝ)
9 lmdvg.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
109ralrimiva 3121 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
11 fveq2 6822 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹𝑘) = (𝐹𝑙))
12 fvoveq1 7372 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑙 + 1)))
1311, 12breq12d 5105 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1))))
1413cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1510, 14sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1615r19.21bi 3221 . . . . . . . . . 10 ((𝜑𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1716adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
18 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
19 fveq2 6822 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2019breq1d 5102 . . . . . . . . . . . 12 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑙) ≤ 𝑥))
2120cbvralvw 3207 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2221rexbii 3076 . . . . . . . . . 10 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2318, 22sylib 218 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
242, 3, 8, 17, 23climsup 15577 . . . . . . . 8 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
25 nnex 12134 . . . . . . . . . . 11 ℕ ∈ V
26 fex 7162 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ ℕ ∈ V) → 𝐹 ∈ V)
274, 25, 26sylancl 586 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
2827adantr 480 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ V)
29 ltso 11196 . . . . . . . . . . 11 < Or ℝ
3029supex 9354 . . . . . . . . . 10 sup(ran 𝐹, ℝ, < ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → sup(ran 𝐹, ℝ, < ) ∈ V)
32 simpr 484 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
33 breldmg 5852 . . . . . . . . 9 ((𝐹 ∈ V ∧ sup(ran 𝐹, ℝ, < ) ∈ V ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3428, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3524, 34syldan 591 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ∈ dom ⇝ )
361, 35mtand 815 . . . . . 6 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
37 ralnex 3055 . . . . . 6 (∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
3836, 37sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
39 simplr 768 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
407adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
4140ffvelcdmda 7018 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4239, 41ltnled 11263 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
4342rexbidva 3151 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥))
44 rexnal 3081 . . . . . . 7 (∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
4543, 44bitrdi 287 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4645ralbidva 3150 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4738, 46mpbird 257 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
4847r19.21bi 3221 . . 3 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
4939ad2antrr 726 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
5041ad2antrr 726 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℝ)
5140ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ)
52 uznnssnn 12796 . . . . . . . . . 10 (𝑗 ∈ ℕ → (ℤ𝑗) ⊆ ℕ)
5352ad3antlr 731 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ ℕ)
54 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
5553, 54sseldd 3936 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5651, 55ffvelcdmd 7019 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
57 simplr 768 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑗))
58 simp-4l 782 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
59 simpllr 775 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
60 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
617ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝐹:ℕ⟶ℝ)
62 fzssnn 13471 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...𝑘) ⊆ ℕ)
6362ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝑗...𝑘) ⊆ ℕ)
64 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ (𝑗...𝑘))
6563, 64sseldd 3936 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ ℕ)
6661, 65ffvelcdmd 7019 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝐹𝑙) ∈ ℝ)
67 simplll 774 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝜑)
68 fzssnn 13471 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...(𝑘 − 1)) ⊆ ℕ)
6968ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝑗...(𝑘 − 1)) ⊆ ℕ)
70 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ (𝑗...(𝑘 − 1)))
7169, 70sseldd 3936 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ ℕ)
7267, 71, 16syl2anc 584 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
7360, 66, 72monoord 13939 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7458, 59, 54, 73syl21anc 837 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7549, 50, 56, 57, 74ltletrd 11276 . . . . . 6 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑘))
7675ralrimiva 3121 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
7776ex 412 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
7877reximdva 3142 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
7948, 78mpd 15 . 2 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
8079ralrimiva 3121 1 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  dom cdm 5619  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347  cn 12128  cuz 12735  [,)cico 13250  ...cfz 13410  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395
This theorem is referenced by:  lmdvglim  33921  esumcvg  34053
  Copyright terms: Public domain W3C validator