Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdvg Structured version   Visualization version   GIF version

Theorem lmdvg 33899
Description: If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.)
Hypotheses
Ref Expression
lmdvg.1 (𝜑𝐹:ℕ⟶(0[,)+∞))
lmdvg.2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
lmdvg.3 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
lmdvg (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝜑,𝑗,𝑘,𝑥

Proof of Theorem lmdvg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lmdvg.3 . . . . . . 7 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
2 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
3 1zzd 12674 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 1 ∈ ℤ)
4 lmdvg.1 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(0[,)+∞))
5 rge0ssre 13516 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
6 fss 6763 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
74, 5, 6sylancl 585 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹:ℕ⟶ℝ)
9 lmdvg.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
109ralrimiva 3152 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
11 fveq2 6920 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹𝑘) = (𝐹𝑙))
12 fvoveq1 7471 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑙 + 1)))
1311, 12breq12d 5179 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1))))
1413cbvralvw 3243 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1510, 14sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1615r19.21bi 3257 . . . . . . . . . 10 ((𝜑𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1716adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
18 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
19 fveq2 6920 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2019breq1d 5176 . . . . . . . . . . . 12 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑙) ≤ 𝑥))
2120cbvralvw 3243 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2221rexbii 3100 . . . . . . . . . 10 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2318, 22sylib 218 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
242, 3, 8, 17, 23climsup 15718 . . . . . . . 8 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
25 nnex 12299 . . . . . . . . . . 11 ℕ ∈ V
26 fex 7263 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ ℕ ∈ V) → 𝐹 ∈ V)
274, 25, 26sylancl 585 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
2827adantr 480 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ V)
29 ltso 11370 . . . . . . . . . . 11 < Or ℝ
3029supex 9532 . . . . . . . . . 10 sup(ran 𝐹, ℝ, < ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → sup(ran 𝐹, ℝ, < ) ∈ V)
32 simpr 484 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
33 breldmg 5934 . . . . . . . . 9 ((𝐹 ∈ V ∧ sup(ran 𝐹, ℝ, < ) ∈ V ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3428, 31, 32, 33syl3anc 1371 . . . . . . . 8 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3524, 34syldan 590 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ∈ dom ⇝ )
361, 35mtand 815 . . . . . 6 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
37 ralnex 3078 . . . . . 6 (∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
3836, 37sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
39 simplr 768 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
407adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
4140ffvelcdmda 7118 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4239, 41ltnled 11437 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
4342rexbidva 3183 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥))
44 rexnal 3106 . . . . . . 7 (∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
4543, 44bitrdi 287 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4645ralbidva 3182 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4738, 46mpbird 257 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
4847r19.21bi 3257 . . 3 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
4939ad2antrr 725 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
5041ad2antrr 725 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℝ)
5140ad3antrrr 729 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ)
52 uznnssnn 12960 . . . . . . . . . 10 (𝑗 ∈ ℕ → (ℤ𝑗) ⊆ ℕ)
5352ad3antlr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ ℕ)
54 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
5553, 54sseldd 4009 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5651, 55ffvelcdmd 7119 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
57 simplr 768 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑗))
58 simp-4l 782 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
59 simpllr 775 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
60 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
617ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝐹:ℕ⟶ℝ)
62 fzssnn 13628 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...𝑘) ⊆ ℕ)
6362ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝑗...𝑘) ⊆ ℕ)
64 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ (𝑗...𝑘))
6563, 64sseldd 4009 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ ℕ)
6661, 65ffvelcdmd 7119 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝐹𝑙) ∈ ℝ)
67 simplll 774 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝜑)
68 fzssnn 13628 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...(𝑘 − 1)) ⊆ ℕ)
6968ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝑗...(𝑘 − 1)) ⊆ ℕ)
70 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ (𝑗...(𝑘 − 1)))
7169, 70sseldd 4009 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ ℕ)
7267, 71, 16syl2anc 583 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
7360, 66, 72monoord 14083 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7458, 59, 54, 73syl21anc 837 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7549, 50, 56, 57, 74ltletrd 11450 . . . . . 6 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑘))
7675ralrimiva 3152 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
7776ex 412 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
7877reximdva 3174 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
7948, 78mpd 15 . 2 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
8079ralrimiva 3152 1 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  dom cdm 5700  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520  cn 12293  cuz 12903  [,)cico 13409  ...cfz 13567  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  lmdvglim  33900  esumcvg  34050
  Copyright terms: Public domain W3C validator