| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem6 | Structured version Visualization version GIF version | ||
| Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| smflimsuplem6.a | ⊢ Ⅎ𝑛𝜑 |
| smflimsuplem6.b | ⊢ Ⅎ𝑚𝜑 |
| smflimsuplem6.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smflimsuplem6.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smflimsuplem6.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smflimsuplem6.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smflimsuplem6.e | ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) |
| smflimsuplem6.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) |
| smflimsuplem6.r | ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| smflimsuplem6.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| smflimsuplem6.x | ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
| Ref | Expression |
|---|---|
| smflimsuplem6 | ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smflimsuplem6.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | fvexi 6899 | . . . 4 ⊢ 𝑍 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
| 4 | 3 | mptexd 7225 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V) |
| 5 | fvexd 6900 | . 2 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
| 6 | smflimsuplem6.a | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
| 7 | smflimsuplem6.b | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
| 8 | smflimsuplem6.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | smflimsuplem6.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 10 | smflimsuplem6.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 11 | smflimsuplem6.e | . . . 4 ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) | |
| 12 | smflimsuplem6.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) | |
| 13 | smflimsuplem6.r | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | |
| 14 | smflimsuplem6.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 15 | smflimsuplem6.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) | |
| 16 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15 | smflimsuplem5 46772 | . . 3 ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 17 | fvexd 6900 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ∈ V) | |
| 18 | 1 | eluzelz2 45347 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| 19 | 14, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | eqid 2734 | . . . 4 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 21 | 1 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 22 | 21 | biimpi 216 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 23 | uzss 12882 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| 25 | 24, 1 | sseqtrrdi 4005 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 26 | 14, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 27 | ssid 3986 | . . . . 5 ⊢ (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁) | |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁)) |
| 29 | fvexd 6900 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) ∈ V) | |
| 30 | 6, 3, 17, 19, 20, 26, 28, 29 | climeqmpt 45645 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))))) |
| 31 | 16, 30 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 32 | breldmg 5900 | . 2 ⊢ (((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V ∧ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | |
| 33 | 4, 5, 31, 32 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∩ ciin 4972 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ran crn 5666 ⟶wf 6536 ‘cfv 6540 supcsup 9461 ℝcr 11135 ℝ*cxr 11275 < clt 11276 ℤcz 12595 ℤ≥cuz 12859 lim supclsp 15487 ⇝ cli 15501 SAlgcsalg 46256 SMblFncsmblfn 46643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-q 12972 df-rp 13016 df-ioo 13372 df-ico 13374 df-fz 13529 df-fl 13813 df-ceil 13814 df-seq 14024 df-exp 14084 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-limsup 15488 df-clim 15505 df-smblfn 46644 |
| This theorem is referenced by: smflimsuplem7 46774 |
| Copyright terms: Public domain | W3C validator |