Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem6 Structured version   Visualization version   GIF version

Theorem smflimsuplem6 46807
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem6.a 𝑛𝜑
smflimsuplem6.b 𝑚𝜑
smflimsuplem6.m (𝜑𝑀 ∈ ℤ)
smflimsuplem6.z 𝑍 = (ℤ𝑀)
smflimsuplem6.s (𝜑𝑆 ∈ SAlg)
smflimsuplem6.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem6.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem6.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem6.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem6.n (𝜑𝑁𝑍)
smflimsuplem6.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem6 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem6
StepHypRef Expression
1 smflimsuplem6.z . . . . 5 𝑍 = (ℤ𝑀)
21fvexi 6840 . . . 4 𝑍 ∈ V
32a1i 11 . . 3 (𝜑𝑍 ∈ V)
43mptexd 7164 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V)
5 fvexd 6841 . 2 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
6 smflimsuplem6.a . . . 4 𝑛𝜑
7 smflimsuplem6.b . . . 4 𝑚𝜑
8 smflimsuplem6.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 smflimsuplem6.s . . . 4 (𝜑𝑆 ∈ SAlg)
10 smflimsuplem6.f . . . 4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
11 smflimsuplem6.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 smflimsuplem6.h . . . 4 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
13 smflimsuplem6.r . . . 4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
14 smflimsuplem6.n . . . 4 (𝜑𝑁𝑍)
15 smflimsuplem6.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
166, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15smflimsuplem5 46806 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
17 fvexd 6841 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
181eluzelz2 45383 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
1914, 18syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
20 eqid 2729 . . . 4 (ℤ𝑁) = (ℤ𝑁)
211eleq2i 2820 . . . . . . . 8 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
2221biimpi 216 . . . . . . 7 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
23 uzss 12776 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
2422, 23syl 17 . . . . . 6 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
2524, 1sseqtrrdi 3979 . . . . 5 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
2614, 25syl 17 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
27 ssid 3960 . . . . 5 (ℤ𝑁) ⊆ (ℤ𝑁)
2827a1i 11 . . . 4 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
29 fvexd 6841 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) ∈ V)
306, 3, 17, 19, 20, 26, 28, 29climeqmpt 45679 . . 3 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))))
3116, 30mpbird 257 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
32 breldmg 5856 . 2 (((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V ∧ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))) → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
334, 5, 31, 32syl3anc 1373 1 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  {crab 3396  Vcvv 3438  wss 3905   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  supcsup 9349  cr 11027  *cxr 11167   < clt 11168  cz 12489  cuz 12753  lim supclsp 15395  cli 15409  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fz 13429  df-fl 13714  df-ceil 13715  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-smblfn 46678
This theorem is referenced by:  smflimsuplem7  46808
  Copyright terms: Public domain W3C validator