![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem6 | Structured version Visualization version GIF version |
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
smflimsuplem6.a | ⊢ Ⅎ𝑛𝜑 |
smflimsuplem6.b | ⊢ Ⅎ𝑚𝜑 |
smflimsuplem6.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smflimsuplem6.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smflimsuplem6.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smflimsuplem6.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smflimsuplem6.e | ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) |
smflimsuplem6.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) |
smflimsuplem6.r | ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
smflimsuplem6.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
smflimsuplem6.x | ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
Ref | Expression |
---|---|
smflimsuplem6 | ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem6.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | fvexi 6928 | . . . 4 ⊢ 𝑍 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
4 | 3 | mptexd 7251 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V) |
5 | fvexd 6929 | . 2 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
6 | smflimsuplem6.a | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
7 | smflimsuplem6.b | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
8 | smflimsuplem6.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | smflimsuplem6.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
10 | smflimsuplem6.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
11 | smflimsuplem6.e | . . . 4 ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) | |
12 | smflimsuplem6.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) | |
13 | smflimsuplem6.r | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | |
14 | smflimsuplem6.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
15 | smflimsuplem6.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) | |
16 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15 | smflimsuplem5 46808 | . . 3 ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
17 | fvexd 6929 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ∈ V) | |
18 | 1 | eluzelz2 45382 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
19 | 14, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | eqid 2737 | . . . 4 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
21 | 1 | eleq2i 2833 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
22 | 21 | biimpi 216 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
23 | uzss 12908 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
25 | 24, 1 | sseqtrrdi 4050 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
26 | 14, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
27 | ssid 4021 | . . . . 5 ⊢ (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁) | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁)) |
29 | fvexd 6929 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) ∈ V) | |
30 | 6, 3, 17, 19, 20, 26, 28, 29 | climeqmpt 45681 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))))) |
31 | 16, 30 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
32 | breldmg 5927 | . 2 ⊢ (((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V ∧ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | |
33 | 4, 5, 31, 32 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2108 {crab 3436 Vcvv 3481 ⊆ wss 3966 ∩ ciin 5000 class class class wbr 5151 ↦ cmpt 5234 dom cdm 5693 ran crn 5694 ⟶wf 6565 ‘cfv 6569 supcsup 9487 ℝcr 11161 ℝ*cxr 11301 < clt 11302 ℤcz 12620 ℤ≥cuz 12885 lim supclsp 15512 ⇝ cli 15526 SAlgcsalg 46292 SMblFncsmblfn 46679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-rp 13042 df-ioo 13397 df-ico 13399 df-fz 13554 df-fl 13838 df-ceil 13839 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-smblfn 46680 |
This theorem is referenced by: smflimsuplem7 46810 |
Copyright terms: Public domain | W3C validator |