Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem6 Structured version   Visualization version   GIF version

Theorem smflimsuplem6 45531
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem6.a 𝑛𝜑
smflimsuplem6.b 𝑚𝜑
smflimsuplem6.m (𝜑𝑀 ∈ ℤ)
smflimsuplem6.z 𝑍 = (ℤ𝑀)
smflimsuplem6.s (𝜑𝑆 ∈ SAlg)
smflimsuplem6.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem6.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem6.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem6.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem6.n (𝜑𝑁𝑍)
smflimsuplem6.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem6 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem6
StepHypRef Expression
1 smflimsuplem6.z . . . . 5 𝑍 = (ℤ𝑀)
21fvexi 6905 . . . 4 𝑍 ∈ V
32a1i 11 . . 3 (𝜑𝑍 ∈ V)
43mptexd 7225 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V)
5 fvexd 6906 . 2 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
6 smflimsuplem6.a . . . 4 𝑛𝜑
7 smflimsuplem6.b . . . 4 𝑚𝜑
8 smflimsuplem6.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 smflimsuplem6.s . . . 4 (𝜑𝑆 ∈ SAlg)
10 smflimsuplem6.f . . . 4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
11 smflimsuplem6.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 smflimsuplem6.h . . . 4 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
13 smflimsuplem6.r . . . 4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
14 smflimsuplem6.n . . . 4 (𝜑𝑁𝑍)
15 smflimsuplem6.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
166, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15smflimsuplem5 45530 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
17 fvexd 6906 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
181eluzelz2 44103 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
1914, 18syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
20 eqid 2732 . . . 4 (ℤ𝑁) = (ℤ𝑁)
211eleq2i 2825 . . . . . . . 8 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
2221biimpi 215 . . . . . . 7 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
23 uzss 12844 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
2422, 23syl 17 . . . . . 6 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
2524, 1sseqtrrdi 4033 . . . . 5 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
2614, 25syl 17 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
27 ssid 4004 . . . . 5 (ℤ𝑁) ⊆ (ℤ𝑁)
2827a1i 11 . . . 4 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
29 fvexd 6906 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) ∈ V)
306, 3, 17, 19, 20, 26, 28, 29climeqmpt 44403 . . 3 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))))
3116, 30mpbird 256 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
32 breldmg 5909 . 2 (((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V ∧ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))) → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
334, 5, 31, 32syl3anc 1371 1 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  {crab 3432  Vcvv 3474  wss 3948   ciin 4998   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  wf 6539  cfv 6543  supcsup 9434  cr 11108  *cxr 11246   < clt 11247  cz 12557  cuz 12821  lim supclsp 15413  cli 15427  SAlgcsalg 45014  SMblFncsmblfn 45401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-ioo 13327  df-ico 13329  df-fz 13484  df-fl 13756  df-ceil 13757  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-limsup 15414  df-clim 15431  df-smblfn 45402
This theorem is referenced by:  smflimsuplem7  45532
  Copyright terms: Public domain W3C validator