Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem6 | Structured version Visualization version GIF version |
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
smflimsuplem6.a | ⊢ Ⅎ𝑛𝜑 |
smflimsuplem6.b | ⊢ Ⅎ𝑚𝜑 |
smflimsuplem6.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smflimsuplem6.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smflimsuplem6.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smflimsuplem6.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smflimsuplem6.e | ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) |
smflimsuplem6.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) |
smflimsuplem6.r | ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
smflimsuplem6.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
smflimsuplem6.x | ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
Ref | Expression |
---|---|
smflimsuplem6 | ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem6.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | fvexi 6788 | . . . 4 ⊢ 𝑍 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
4 | 3 | mptexd 7100 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V) |
5 | fvexd 6789 | . 2 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
6 | smflimsuplem6.a | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
7 | smflimsuplem6.b | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
8 | smflimsuplem6.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | smflimsuplem6.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
10 | smflimsuplem6.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
11 | smflimsuplem6.e | . . . 4 ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) | |
12 | smflimsuplem6.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) | |
13 | smflimsuplem6.r | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | |
14 | smflimsuplem6.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
15 | smflimsuplem6.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) | |
16 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15 | smflimsuplem5 44357 | . . 3 ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
17 | fvexd 6789 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ∈ V) | |
18 | 1 | eluzelz2 42943 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
19 | 14, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | eqid 2738 | . . . 4 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
21 | 1 | eleq2i 2830 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
22 | 21 | biimpi 215 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
23 | uzss 12605 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
25 | 24, 1 | sseqtrrdi 3972 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
26 | 14, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
27 | ssid 3943 | . . . . 5 ⊢ (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁) | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁)) |
29 | fvexd 6789 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) ∈ V) | |
30 | 6, 3, 17, 19, 20, 26, 28, 29 | climeqmpt 43238 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))))) |
31 | 16, 30 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
32 | breldmg 5818 | . 2 ⊢ (((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V ∧ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | |
33 | 4, 5, 31, 32 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∩ ciin 4925 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ⟶wf 6429 ‘cfv 6433 supcsup 9199 ℝcr 10870 ℝ*cxr 11008 < clt 11009 ℤcz 12319 ℤ≥cuz 12582 lim supclsp 15179 ⇝ cli 15193 SAlgcsalg 43849 SMblFncsmblfn 44233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fz 13240 df-fl 13512 df-ceil 13513 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-smblfn 44234 |
This theorem is referenced by: smflimsuplem7 44359 |
Copyright terms: Public domain | W3C validator |