Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfv | Structured version Visualization version GIF version |
Description: The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climfv | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ⇝ 𝐴) | |
2 | climrel 15273 | . . . . . 6 ⊢ Rel ⇝ | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → Rel ⇝ ) |
4 | brrelex1 5658 | . . . . 5 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ V) | |
5 | 3, 1, 4 | syl2anc 584 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
6 | brrelex2 5659 | . . . . 5 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐴 ∈ V) | |
7 | 3, 1, 6 | syl2anc 584 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ V) |
8 | breldmg 5838 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ V ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ dom ⇝ ) | |
9 | 5, 7, 1, 8 | syl3anc 1370 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ dom ⇝ ) |
10 | climdm 15335 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
11 | 9, 10 | sylib 217 | . 2 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
12 | climuni 15333 | . 2 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ ( ⇝ ‘𝐹)) → 𝐴 = ( ⇝ ‘𝐹)) | |
13 | 1, 11, 12 | syl2anc 584 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 dom cdm 5607 Rel wrel 5612 ‘cfv 6465 ⇝ cli 15265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 |
This theorem is referenced by: climfvd 43476 |
Copyright terms: Public domain | W3C validator |