![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climxlim2 | Structured version Visualization version GIF version |
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
climxlim2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climxlim2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climxlim2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
climxlim2.a | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Ref | Expression |
---|---|
climxlim2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climxlim2.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | eluzelz2 45318 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
3 | 2 | ad2antlr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝑗 ∈ ℤ) |
4 | eqid 2740 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
5 | climxlim2.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹:𝑍⟶ℝ*) |
7 | 1 | uzssd3 45341 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆ 𝑍) |
9 | 6, 8 | fssresd 6788 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
10 | 9 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
11 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) | |
12 | climxlim2.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝐴) |
14 | 1 | fvexi 6934 | . . . . . . . . 9 ⊢ 𝑍 ∈ V |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ∈ V) |
16 | 5, 15 | fexd 7264 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | climres 15621 | . . . . . . 7 ⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
18 | 2, 16, 17 | syl2anr 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
19 | 13, 18 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
21 | 3, 4, 10, 11, 20 | climxlim2lem 45766 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴) |
22 | 1, 5 | fuzxrpmcn 45749 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
24 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
25 | 23, 24 | xlimres 45742 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
26 | 25 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
27 | 21, 26 | mpbird 257 | . 2 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝐹~~>*𝐴) |
28 | climxlim2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | 5 | ffnd 6748 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
30 | climcl 15545 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
31 | 12, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
32 | breldmg 5934 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ dom ⇝ ) | |
33 | 16, 31, 12, 32 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
34 | 28, 1, 29, 33 | climrescn 45669 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) |
35 | 27, 34 | r19.29a 3168 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝ*cxr 11323 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 ~~>*clsxlim 45739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fl 13843 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-ordt 17561 df-ps 18636 df-tsr 18637 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-lm 23258 df-xms 24351 df-ms 24352 df-xlim 45740 |
This theorem is referenced by: dfxlim2v 45768 meaiuninc3v 46405 |
Copyright terms: Public domain | W3C validator |