![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climxlim2 | Structured version Visualization version GIF version |
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
climxlim2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climxlim2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climxlim2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
climxlim2.a | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Ref | Expression |
---|---|
climxlim2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climxlim2.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | eluzelz2 40370 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
3 | 2 | ad2antlr 719 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝑗 ∈ ℤ) |
4 | eqid 2799 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
5 | climxlim2.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹:𝑍⟶ℝ*) |
7 | 1 | uzssd3 40396 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
8 | 7 | adantl 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆ 𝑍) |
9 | 6, 8 | fssresd 6286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
10 | 9 | adantr 473 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
11 | simpr 478 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) | |
12 | climxlim2.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
13 | 12 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝐴) |
14 | 1 | fvexi 6425 | . . . . . . . . 9 ⊢ 𝑍 ∈ V |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ∈ V) |
16 | 5, 15 | fexd 40054 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | climres 14647 | . . . . . . 7 ⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
18 | 2, 16, 17 | syl2anr 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
19 | 13, 18 | mpbird 249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
20 | 19 | adantr 473 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
21 | 3, 4, 10, 11, 20 | climxlim2lem 40815 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴) |
22 | 1, 5 | fuzxrpmcn 40798 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
23 | 22 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
24 | 2 | adantl 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
25 | 23, 24 | xlimres 40791 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
26 | 25 | adantr 473 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
27 | 21, 26 | mpbird 249 | . 2 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝐹~~>*𝐴) |
28 | climxlim2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | 5 | ffnd 6257 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
30 | climcl 14571 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
31 | 12, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
32 | breldmg 5533 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ dom ⇝ ) | |
33 | 16, 31, 12, 32 | syl3anc 1491 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
34 | 28, 1, 29, 33 | climrescn 40724 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) |
35 | 27, 34 | r19.29a 3259 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 class class class wbr 4843 dom cdm 5312 ↾ cres 5314 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑pm cpm 8096 ℂcc 10222 ℝ*cxr 10362 ℤcz 11666 ℤ≥cuz 11930 ⇝ cli 14556 ~~>*clsxlim 40788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fl 12848 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-mulr 16281 df-starv 16282 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-rest 16398 df-topn 16399 df-topgen 16419 df-ordt 16476 df-ps 17515 df-tsr 17516 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-lm 21362 df-xms 22453 df-ms 22454 df-xlim 40789 |
This theorem is referenced by: dfxlim2v 40817 meaiuninc3v 41444 |
Copyright terms: Public domain | W3C validator |