Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2 Structured version   Visualization version   GIF version

Theorem climxlim2 42488
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2.m (𝜑𝑀 ∈ ℤ)
climxlim2.z 𝑍 = (ℤ𝑀)
climxlim2.f (𝜑𝐹:𝑍⟶ℝ*)
climxlim2.a (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2 (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climxlim2.z . . . . . 6 𝑍 = (ℤ𝑀)
21eluzelz2 42040 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
32ad2antlr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝑗 ∈ ℤ)
4 eqid 2798 . . . 4 (ℤ𝑗) = (ℤ𝑗)
5 climxlim2.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 484 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹:𝑍⟶ℝ*)
71uzssd3 42063 . . . . . . 7 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
87adantl 485 . . . . . 6 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
96, 8fssresd 6519 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
109adantr 484 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
11 simpr 488 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
12 climxlim2.a . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 484 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹𝐴)
141fvexi 6659 . . . . . . . . 9 𝑍 ∈ V
1514a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
165, 15fexd 6967 . . . . . . 7 (𝜑𝐹 ∈ V)
17 climres 14924 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
182, 16, 17syl2anr 599 . . . . . 6 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1913, 18mpbird 260 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
2019adantr 484 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
213, 4, 10, 11, 20climxlim2lem 42487 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗))~~>*𝐴)
221, 5fuzxrpmcn 42470 . . . . . 6 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2322adantr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝐹 ∈ (ℝ*pm ℂ))
242adantl 485 . . . . 5 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2523, 24xlimres 42463 . . . 4 ((𝜑𝑗𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2625adantr 484 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2721, 26mpbird 260 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝐹~~>*𝐴)
28 climxlim2.m . . 3 (𝜑𝑀 ∈ ℤ)
295ffnd 6488 . . 3 (𝜑𝐹 Fn 𝑍)
30 climcl 14848 . . . . 5 (𝐹𝐴𝐴 ∈ ℂ)
3112, 30syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
32 breldmg 5742 . . . 4 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹𝐴) → 𝐹 ∈ dom ⇝ )
3316, 31, 12, 32syl3anc 1368 . . 3 (𝜑𝐹 ∈ dom ⇝ )
3428, 1, 29, 33climrescn 42390 . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
3527, 34r19.29a 3248 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881   class class class wbr 5030  dom cdm 5519  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  *cxr 10663  cz 11969  cuz 12231  cli 14833  ~~>*clsxlim 42460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-lm 21834  df-xms 22927  df-ms 22928  df-xlim 42461
This theorem is referenced by:  dfxlim2v  42489  meaiuninc3v  43123
  Copyright terms: Public domain W3C validator