Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeq Structured version   Visualization version   GIF version

Theorem climeldmeq 44866
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeq.z 𝑍 = (ℤ𝑀)
climeldmeq.f (𝜑𝐹𝑉)
climeldmeq.g (𝜑𝐺𝑊)
climeldmeq.m (𝜑𝑀 ∈ ℤ)
climeldmeq.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeldmeq (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeq
StepHypRef Expression
1 climeldmeq.g . . . . 5 (𝜑𝐺𝑊)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
3 fvexd 6896 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V)
4 climdm 15495 . . . . . . 7 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
54a1i 11 . . . . . 6 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)))
65biimpa 476 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
7 climeldmeq.z . . . . . . 7 𝑍 = (ℤ𝑀)
8 climeldmeq.f . . . . . . 7 (𝜑𝐹𝑉)
9 climeldmeq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 climeldmeq.e . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
117, 8, 1, 9, 10climeq 15508 . . . . . 6 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
1211adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
136, 12mpbid 231 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹))
14 breldmg 5899 . . . 4 ((𝐺𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ )
152, 3, 13, 14syl3anc 1368 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
1615ex 412 . 2 (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ ))
178adantr 480 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹𝑉)
18 fvexd 6896 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V)
19 climdm 15495 . . . . . . 7 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
2019biimpi 215 . . . . . 6 (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺))
2120adantl 481 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
2210eqcomd 2730 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
237, 1, 8, 9, 22climeq 15508 . . . . . 6 (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2423adantr 480 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2521, 24mpbid 231 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
26 breldmg 5899 . . . 4 ((𝐹𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ )
2717, 18, 25, 26syl3anc 1368 . . 3 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
2827ex 412 . 2 (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ ))
2916, 28impbid 211 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466   class class class wbr 5138  dom cdm 5666  cfv 6533  cz 12555  cuz 12819  cli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429
This theorem is referenced by:  climeldmeqmpt  44869  climfveq  44870  climfveqf  44881  climeldmeqf  44884  climeldmeqmpt3  44890
  Copyright terms: Public domain W3C validator