Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeq Structured version   Visualization version   GIF version

Theorem climeldmeq 45663
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeq.z 𝑍 = (ℤ𝑀)
climeldmeq.f (𝜑𝐹𝑉)
climeldmeq.g (𝜑𝐺𝑊)
climeldmeq.m (𝜑𝑀 ∈ ℤ)
climeldmeq.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeldmeq (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeq
StepHypRef Expression
1 climeldmeq.g . . . . 5 (𝜑𝐺𝑊)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
3 fvexd 6873 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V)
4 climdm 15520 . . . . . . 7 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
54a1i 11 . . . . . 6 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)))
65biimpa 476 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
7 climeldmeq.z . . . . . . 7 𝑍 = (ℤ𝑀)
8 climeldmeq.f . . . . . . 7 (𝜑𝐹𝑉)
9 climeldmeq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 climeldmeq.e . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
117, 8, 1, 9, 10climeq 15533 . . . . . 6 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
1211adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
136, 12mpbid 232 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹))
14 breldmg 5873 . . . 4 ((𝐺𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ )
152, 3, 13, 14syl3anc 1373 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
1615ex 412 . 2 (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ ))
178adantr 480 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹𝑉)
18 fvexd 6873 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V)
19 climdm 15520 . . . . . . 7 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
2019biimpi 216 . . . . . 6 (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺))
2120adantl 481 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
2210eqcomd 2735 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
237, 1, 8, 9, 22climeq 15533 . . . . . 6 (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2423adantr 480 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2521, 24mpbid 232 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
26 breldmg 5873 . . . 4 ((𝐹𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ )
2717, 18, 25, 26syl3anc 1373 . . 3 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
2827ex 412 . 2 (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ ))
2916, 28impbid 212 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  dom cdm 5638  cfv 6511  cz 12529  cuz 12793  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454
This theorem is referenced by:  climeldmeqmpt  45666  climfveq  45667  climfveqf  45678  climeldmeqf  45681  climeldmeqmpt3  45687
  Copyright terms: Public domain W3C validator