| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeq | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| climeldmeq.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climeldmeq.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climeldmeq.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climeldmeq.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climeldmeq.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| climeldmeq | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeldmeq.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
| 3 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V) | |
| 4 | climdm 15520 | . . . . . . 7 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))) |
| 6 | 5 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 7 | climeldmeq.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 8 | climeldmeq.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 9 | climeldmeq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 10 | climeldmeq.e | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 11 | 7, 8, 1, 9, 10 | climeq 15533 | . . . . . 6 ⊢ (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹))) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹))) |
| 13 | 6, 12 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹)) |
| 14 | breldmg 5873 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ ) | |
| 15 | 2, 3, 13, 14 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ )) |
| 17 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
| 18 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V) | |
| 19 | climdm 15520 | . . . . . . 7 ⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | |
| 20 | 19 | biimpi 216 | . . . . . 6 ⊢ (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
| 22 | 10 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
| 23 | 7, 1, 8, 9, 22 | climeq 15533 | . . . . . 6 ⊢ (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
| 25 | 21, 24 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
| 26 | breldmg 5873 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ ) | |
| 27 | 17, 18, 25, 26 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 28 | 27 | ex 412 | . 2 ⊢ (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ )) |
| 29 | 16, 28 | impbid 212 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 |
| This theorem is referenced by: climeldmeqmpt 45666 climfveq 45667 climfveqf 45678 climeldmeqf 45681 climeldmeqmpt3 45687 |
| Copyright terms: Public domain | W3C validator |