Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeq Structured version   Visualization version   GIF version

Theorem climeldmeq 45711
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeq.z 𝑍 = (ℤ𝑀)
climeldmeq.f (𝜑𝐹𝑉)
climeldmeq.g (𝜑𝐺𝑊)
climeldmeq.m (𝜑𝑀 ∈ ℤ)
climeldmeq.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeldmeq (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeq
StepHypRef Expression
1 climeldmeq.g . . . . 5 (𝜑𝐺𝑊)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
3 fvexd 6837 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V)
4 climdm 15461 . . . . . . 7 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
54a1i 11 . . . . . 6 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)))
65biimpa 476 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
7 climeldmeq.z . . . . . . 7 𝑍 = (ℤ𝑀)
8 climeldmeq.f . . . . . . 7 (𝜑𝐹𝑉)
9 climeldmeq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 climeldmeq.e . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
117, 8, 1, 9, 10climeq 15474 . . . . . 6 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
1211adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
136, 12mpbid 232 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹))
14 breldmg 5848 . . . 4 ((𝐺𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ )
152, 3, 13, 14syl3anc 1373 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
1615ex 412 . 2 (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ ))
178adantr 480 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹𝑉)
18 fvexd 6837 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V)
19 climdm 15461 . . . . . . 7 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
2019biimpi 216 . . . . . 6 (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺))
2120adantl 481 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
2210eqcomd 2737 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
237, 1, 8, 9, 22climeq 15474 . . . . . 6 (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2423adantr 480 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2521, 24mpbid 232 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
26 breldmg 5848 . . . 4 ((𝐹𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ )
2717, 18, 25, 26syl3anc 1373 . . 3 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
2827ex 412 . 2 (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ ))
2916, 28impbid 212 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5089  dom cdm 5614  cfv 6481  cz 12468  cuz 12732  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395
This theorem is referenced by:  climeldmeqmpt  45714  climfveq  45715  climfveqf  45726  climeldmeqf  45729  climeldmeqmpt3  45735
  Copyright terms: Public domain W3C validator