Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeq Structured version   Visualization version   GIF version

Theorem climeldmeq 45223
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeq.z 𝑍 = (ℤ𝑀)
climeldmeq.f (𝜑𝐹𝑉)
climeldmeq.g (𝜑𝐺𝑊)
climeldmeq.m (𝜑𝑀 ∈ ℤ)
climeldmeq.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeldmeq (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeq
StepHypRef Expression
1 climeldmeq.g . . . . 5 (𝜑𝐺𝑊)
21adantr 479 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
3 fvexd 6915 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V)
4 climdm 15551 . . . . . . 7 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
54a1i 11 . . . . . 6 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)))
65biimpa 475 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
7 climeldmeq.z . . . . . . 7 𝑍 = (ℤ𝑀)
8 climeldmeq.f . . . . . . 7 (𝜑𝐹𝑉)
9 climeldmeq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 climeldmeq.e . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
117, 8, 1, 9, 10climeq 15564 . . . . . 6 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
1211adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹)))
136, 12mpbid 231 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹))
14 breldmg 5915 . . . 4 ((𝐺𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ )
152, 3, 13, 14syl3anc 1368 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
1615ex 411 . 2 (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ ))
178adantr 479 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹𝑉)
18 fvexd 6915 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V)
19 climdm 15551 . . . . . . 7 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
2019biimpi 215 . . . . . 6 (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺))
2120adantl 480 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
2210eqcomd 2731 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
237, 1, 8, 9, 22climeq 15564 . . . . . 6 (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2423adantr 479 . . . . 5 ((𝜑𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2521, 24mpbid 231 . . . 4 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
26 breldmg 5915 . . . 4 ((𝐹𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ )
2717, 18, 25, 26syl3anc 1368 . . 3 ((𝜑𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
2827ex 411 . 2 (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ ))
2916, 28impbid 211 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461   class class class wbr 5152  dom cdm 5681  cfv 6553  cz 12605  cuz 12869  cli 15481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-sup 9481  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-n0 12520  df-z 12606  df-uz 12870  df-rp 13024  df-seq 14017  df-exp 14077  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485
This theorem is referenced by:  climeldmeqmpt  45226  climfveq  45227  climfveqf  45238  climeldmeqf  45241  climeldmeqmpt3  45247
  Copyright terms: Public domain W3C validator