MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Visualization version   GIF version

Theorem cofuval2 17932
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b 𝐵 = (Base‘𝐶)
cofuval2.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
cofuval2.x (𝜑𝐻(𝐷 Func 𝐸)𝐾)
Assertion
Ref Expression
cofuval2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3 𝐵 = (Base‘𝐶)
2 cofuval2.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5144 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
42, 3sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
5 cofuval2.x . . . 4 (𝜑𝐻(𝐷 Func 𝐸)𝐾)
6 df-br 5144 . . . 4 (𝐻(𝐷 Func 𝐸)𝐾 ↔ ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
75, 6sylib 218 . . 3 (𝜑 → ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
81, 4, 7cofuval 17927 . 2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩)
9 relfunc 17907 . . . . . 6 Rel (𝐷 Func 𝐸)
10 brrelex12 5737 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐻(𝐷 Func 𝐸)𝐾) → (𝐻 ∈ V ∧ 𝐾 ∈ V))
119, 5, 10sylancr 587 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ 𝐾 ∈ V))
12 op1stg 8026 . . . . 5 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
1311, 12syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
14 relfunc 17907 . . . . . 6 Rel (𝐶 Func 𝐷)
15 brrelex12 5737 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1614, 2, 15sylancr 587 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
17 op1stg 8026 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1816, 17syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1913, 18coeq12d 5875 . . 3 (𝜑 → ((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝐻𝐹))
20 op2ndg 8027 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
2111, 20syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
22213ad2ant1 1134 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
23183ad2ant1 1134 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2423fveq1d 6908 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
2523fveq1d 6908 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2622, 24, 25oveq123d 7452 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
27 op2ndg 8027 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2816, 27syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
29283ad2ant1 1134 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
3029oveqd 7448 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
3126, 30coeq12d 5875 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)) = (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
3231mpoeq3dva 7510 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
3319, 32opeq12d 4881 . 2 (𝜑 → ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩ = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
348, 33eqtrd 2777 1 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cop 4632   class class class wbr 5143  ccom 5689  Rel wrel 5690  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  Basecbs 17247   Func cfunc 17899  func ccofu 17901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-ixp 8938  df-func 17903  df-cofu 17905
This theorem is referenced by:  catcisolem  18155  funcrngcsetcALT  20641  fuco11a  49023
  Copyright terms: Public domain W3C validator