Proof of Theorem cofuval2
| Step | Hyp | Ref
| Expression |
| 1 | | cofuval2.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | cofuval2.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 3 | | df-br 5144 |
. . . 4
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 4 | 2, 3 | sylib 218 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 5 | | cofuval2.x |
. . . 4
⊢ (𝜑 → 𝐻(𝐷 Func 𝐸)𝐾) |
| 6 | | df-br 5144 |
. . . 4
⊢ (𝐻(𝐷 Func 𝐸)𝐾 ↔ 〈𝐻, 𝐾〉 ∈ (𝐷 Func 𝐸)) |
| 7 | 5, 6 | sylib 218 |
. . 3
⊢ (𝜑 → 〈𝐻, 𝐾〉 ∈ (𝐷 Func 𝐸)) |
| 8 | 1, 4, 7 | cofuval 17927 |
. 2
⊢ (𝜑 → (〈𝐻, 𝐾〉 ∘func
〈𝐹, 𝐺〉) = 〈((1st
‘〈𝐻, 𝐾〉) ∘ (1st
‘〈𝐹, 𝐺〉)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st
‘〈𝐹, 𝐺〉)‘𝑥)(2nd ‘〈𝐻, 𝐾〉)((1st ‘〈𝐹, 𝐺〉)‘𝑦)) ∘ (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)))〉) |
| 9 | | relfunc 17907 |
. . . . . 6
⊢ Rel
(𝐷 Func 𝐸) |
| 10 | | brrelex12 5737 |
. . . . . 6
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐻(𝐷 Func 𝐸)𝐾) → (𝐻 ∈ V ∧ 𝐾 ∈ V)) |
| 11 | 9, 5, 10 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝐻 ∈ V ∧ 𝐾 ∈ V)) |
| 12 | | op1stg 8026 |
. . . . 5
⊢ ((𝐻 ∈ V ∧ 𝐾 ∈ V) →
(1st ‘〈𝐻, 𝐾〉) = 𝐻) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘〈𝐻, 𝐾〉) = 𝐻) |
| 14 | | relfunc 17907 |
. . . . . 6
⊢ Rel
(𝐶 Func 𝐷) |
| 15 | | brrelex12 5737 |
. . . . . 6
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 16 | 14, 2, 15 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 17 | | op1stg 8026 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
| 19 | 13, 18 | coeq12d 5875 |
. . 3
⊢ (𝜑 → ((1st
‘〈𝐻, 𝐾〉) ∘ (1st
‘〈𝐹, 𝐺〉)) = (𝐻 ∘ 𝐹)) |
| 20 | | op2ndg 8027 |
. . . . . . . 8
⊢ ((𝐻 ∈ V ∧ 𝐾 ∈ V) →
(2nd ‘〈𝐻, 𝐾〉) = 𝐾) |
| 21 | 11, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐻, 𝐾〉) = 𝐾) |
| 22 | 21 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (2nd ‘〈𝐻, 𝐾〉) = 𝐾) |
| 23 | 18 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 24 | 23 | fveq1d 6908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1st ‘〈𝐹, 𝐺〉)‘𝑥) = (𝐹‘𝑥)) |
| 25 | 23 | fveq1d 6908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1st ‘〈𝐹, 𝐺〉)‘𝑦) = (𝐹‘𝑦)) |
| 26 | 22, 24, 25 | oveq123d 7452 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((1st
‘〈𝐹, 𝐺〉)‘𝑥)(2nd ‘〈𝐻, 𝐾〉)((1st ‘〈𝐹, 𝐺〉)‘𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))) |
| 27 | | op2ndg 8027 |
. . . . . . . 8
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 28 | 16, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐹, 𝐺〉) = 𝐺) |
| 29 | 28 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 30 | 29 | oveqd 7448 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦) = (𝑥𝐺𝑦)) |
| 31 | 26, 30 | coeq12d 5875 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((((1st
‘〈𝐹, 𝐺〉)‘𝑥)(2nd ‘〈𝐻, 𝐾〉)((1st ‘〈𝐹, 𝐺〉)‘𝑦)) ∘ (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)) = (((𝐹‘𝑥)𝐾(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) |
| 32 | 31 | mpoeq3dva 7510 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st
‘〈𝐹, 𝐺〉)‘𝑥)(2nd ‘〈𝐻, 𝐾〉)((1st ‘〈𝐹, 𝐺〉)‘𝑦)) ∘ (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐾(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) |
| 33 | 19, 32 | opeq12d 4881 |
. 2
⊢ (𝜑 → 〈((1st
‘〈𝐻, 𝐾〉) ∘ (1st
‘〈𝐹, 𝐺〉)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st
‘〈𝐹, 𝐺〉)‘𝑥)(2nd ‘〈𝐻, 𝐾〉)((1st ‘〈𝐹, 𝐺〉)‘𝑦)) ∘ (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)))〉 = 〈(𝐻 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐾(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) |
| 34 | 8, 33 | eqtrd 2777 |
1
⊢ (𝜑 → (〈𝐻, 𝐾〉 ∘func
〈𝐹, 𝐺〉) = 〈(𝐻 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐾(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) |