MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Visualization version   GIF version

Theorem cofuval2 17772
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b 𝐵 = (Base‘𝐶)
cofuval2.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
cofuval2.x (𝜑𝐻(𝐷 Func 𝐸)𝐾)
Assertion
Ref Expression
cofuval2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3 𝐵 = (Base‘𝐶)
2 cofuval2.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5106 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
42, 3sylib 217 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
5 cofuval2.x . . . 4 (𝜑𝐻(𝐷 Func 𝐸)𝐾)
6 df-br 5106 . . . 4 (𝐻(𝐷 Func 𝐸)𝐾 ↔ ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
75, 6sylib 217 . . 3 (𝜑 → ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
81, 4, 7cofuval 17767 . 2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩)
9 relfunc 17747 . . . . . 6 Rel (𝐷 Func 𝐸)
10 brrelex12 5684 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐻(𝐷 Func 𝐸)𝐾) → (𝐻 ∈ V ∧ 𝐾 ∈ V))
119, 5, 10sylancr 587 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ 𝐾 ∈ V))
12 op1stg 7932 . . . . 5 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
1311, 12syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
14 relfunc 17747 . . . . . 6 Rel (𝐶 Func 𝐷)
15 brrelex12 5684 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1614, 2, 15sylancr 587 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
17 op1stg 7932 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1816, 17syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1913, 18coeq12d 5820 . . 3 (𝜑 → ((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝐻𝐹))
20 op2ndg 7933 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
2111, 20syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
22213ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
23183ad2ant1 1133 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2423fveq1d 6844 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
2523fveq1d 6844 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2622, 24, 25oveq123d 7377 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
27 op2ndg 7933 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2816, 27syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
29283ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
3029oveqd 7373 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
3126, 30coeq12d 5820 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)) = (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
3231mpoeq3dva 7433 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
3319, 32opeq12d 4838 . 2 (𝜑 → ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩ = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
348, 33eqtrd 2776 1 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cop 4592   class class class wbr 5105  ccom 5637  Rel wrel 5638  cfv 6496  (class class class)co 7356  cmpo 7358  1st c1st 7918  2nd c2nd 7919  Basecbs 17082   Func cfunc 17739  func ccofu 17741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7359  df-oprab 7360  df-mpo 7361  df-1st 7920  df-2nd 7921  df-map 8766  df-ixp 8835  df-func 17743  df-cofu 17745
This theorem is referenced by:  catcisolem  17995  funcrngcsetcALT  46268
  Copyright terms: Public domain W3C validator