MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Visualization version   GIF version

Theorem cofuval2 17841
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b 𝐵 = (Base‘𝐶)
cofuval2.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
cofuval2.x (𝜑𝐻(𝐷 Func 𝐸)𝐾)
Assertion
Ref Expression
cofuval2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3 𝐵 = (Base‘𝐶)
2 cofuval2.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5148 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
42, 3sylib 217 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
5 cofuval2.x . . . 4 (𝜑𝐻(𝐷 Func 𝐸)𝐾)
6 df-br 5148 . . . 4 (𝐻(𝐷 Func 𝐸)𝐾 ↔ ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
75, 6sylib 217 . . 3 (𝜑 → ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
81, 4, 7cofuval 17836 . 2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩)
9 relfunc 17816 . . . . . 6 Rel (𝐷 Func 𝐸)
10 brrelex12 5727 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐻(𝐷 Func 𝐸)𝐾) → (𝐻 ∈ V ∧ 𝐾 ∈ V))
119, 5, 10sylancr 585 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ 𝐾 ∈ V))
12 op1stg 7989 . . . . 5 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
1311, 12syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
14 relfunc 17816 . . . . . 6 Rel (𝐶 Func 𝐷)
15 brrelex12 5727 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1614, 2, 15sylancr 585 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
17 op1stg 7989 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1816, 17syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1913, 18coeq12d 5863 . . 3 (𝜑 → ((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝐻𝐹))
20 op2ndg 7990 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
2111, 20syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
22213ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
23183ad2ant1 1131 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2423fveq1d 6892 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
2523fveq1d 6892 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2622, 24, 25oveq123d 7432 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
27 op2ndg 7990 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2816, 27syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
29283ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
3029oveqd 7428 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
3126, 30coeq12d 5863 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)) = (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
3231mpoeq3dva 7488 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
3319, 32opeq12d 4880 . 2 (𝜑 → ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩ = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
348, 33eqtrd 2770 1 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  Vcvv 3472  cop 4633   class class class wbr 5147  ccom 5679  Rel wrel 5680  cfv 6542  (class class class)co 7411  cmpo 7413  1st c1st 7975  2nd c2nd 7976  Basecbs 17148   Func cfunc 17808  func ccofu 17810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-ixp 8894  df-func 17812  df-cofu 17814
This theorem is referenced by:  catcisolem  18064  funcrngcsetcALT  46985
  Copyright terms: Public domain W3C validator