![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 14896 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 Σcsu 14893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-xp 5406 df-cnv 5408 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-iota 6146 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-seq 13178 df-sum 14894 |
This theorem is referenced by: sumeq12i 14907 fsump1i 14974 fsum2d 14976 fsumxp 14977 isumnn0nn 15047 arisum 15065 arisum2 15066 geo2sum 15079 bpoly0 15254 bpoly1 15255 bpoly2 15261 bpoly3 15262 bpoly4 15263 efsep 15313 ef4p 15316 rpnnen2lem12 15428 ovolicc2lem4 23814 itg10 23982 dveflem 24269 dvply1 24566 vieta1lem2 24593 aaliou3lem4 24628 dvtaylp 24651 pserdvlem2 24709 advlogexp 24929 log2ublem2 25217 log2ublem3 25218 log2ub 25219 ftalem5 25346 cht1 25434 1sgmprm 25467 lgsquadlem2 25649 axlowdimlem16 26436 finsumvtxdg2ssteplem4 27023 rusgrnumwwlks 27470 rusgrnumwwlksOLD 27471 signsvf0 31459 signsvf1 31460 repr0 31491 k0004val0 39812 binomcxplemnotnn0 40048 fsumiunss 41233 dvnmul 41604 stoweidlem17 41679 dirkertrigeqlem1 41760 etransclem24 41920 etransclem35 41931 |
Copyright terms: Public domain | W3C validator |