![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 15722 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seq 14040 df-sum 15720 |
This theorem is referenced by: sumeq12i 15732 fsump1i 15802 fsum2d 15804 fsumxp 15805 isumnn0nn 15875 arisum 15893 arisum2 15894 geo2sum 15906 bpoly0 16083 bpoly1 16084 bpoly2 16090 bpoly3 16091 bpoly4 16092 efsep 16143 ef4p 16146 rpnnen2lem12 16258 ovolicc2lem4 25569 itg10 25737 dveflem 26032 dvply1 26340 vieta1lem2 26368 aaliou3lem4 26403 dvtaylp 26427 pserdvlem2 26487 advlogexp 26712 log2ublem2 27005 log2ublem3 27006 log2ub 27007 ftalem5 27135 cht1 27223 1sgmprm 27258 lgsquadlem2 27440 axlowdimlem16 28987 finsumvtxdg2ssteplem4 29581 rusgrnumwwlks 30004 signsvf0 34574 signsvf1 34575 repr0 34605 sumeq12si 36185 cbvsumvw2 36229 sumcubes 42326 k0004val0 44144 binomcxplemnotnn0 44352 fsumiunss 45531 dvnmul 45899 stoweidlem17 45973 dirkertrigeqlem1 46054 etransclem24 46214 etransclem35 46225 |
Copyright terms: Public domain | W3C validator |