| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15631 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seq 13943 df-sum 15629 |
| This theorem is referenced by: sumeq12i 15641 fsump1i 15711 fsum2d 15713 fsumxp 15714 isumnn0nn 15784 arisum 15802 arisum2 15803 geo2sum 15815 bpoly0 15992 bpoly1 15993 bpoly2 15999 bpoly3 16000 bpoly4 16001 efsep 16054 ef4p 16057 rpnnen2lem12 16169 ovolicc2lem4 25397 itg10 25565 dveflem 25859 dvply1 26167 vieta1lem2 26195 aaliou3lem4 26230 dvtaylp 26254 pserdvlem2 26314 advlogexp 26540 log2ublem2 26833 log2ublem3 26834 log2ub 26835 ftalem5 26963 cht1 27051 1sgmprm 27086 lgsquadlem2 27268 axlowdimlem16 28860 finsumvtxdg2ssteplem4 29452 rusgrnumwwlks 29877 cos9thpiminplylem3 33747 signsvf0 34544 signsvf1 34545 repr0 34575 sumeq12si 36164 cbvsumvw2 36207 sumcubes 42274 k0004val0 44116 binomcxplemnotnn0 44318 fsumiunss 45546 dvnmul 45914 stoweidlem17 45988 dirkertrigeqlem1 46069 etransclem24 46229 etransclem35 46240 |
| Copyright terms: Public domain | W3C validator |