| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15591 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13904 df-sum 15589 |
| This theorem is referenced by: sumeq12i 15601 fsump1i 15671 fsum2d 15673 fsumxp 15674 isumnn0nn 15744 arisum 15762 arisum2 15763 geo2sum 15775 bpoly0 15952 bpoly1 15953 bpoly2 15959 bpoly3 15960 bpoly4 15961 efsep 16014 ef4p 16017 rpnnen2lem12 16129 ovolicc2lem4 25443 itg10 25611 dveflem 25905 dvply1 26213 vieta1lem2 26241 aaliou3lem4 26276 dvtaylp 26300 pserdvlem2 26360 advlogexp 26586 log2ublem2 26879 log2ublem3 26880 log2ub 26881 ftalem5 27009 cht1 27097 1sgmprm 27132 lgsquadlem2 27314 axlowdimlem16 28930 finsumvtxdg2ssteplem4 29522 rusgrnumwwlks 29947 cos9thpiminplylem3 33789 signsvf0 34585 signsvf1 34586 repr0 34616 sumeq12si 36237 cbvsumvw2 36280 sumcubes 42346 k0004val0 44187 binomcxplemnotnn0 44389 fsumiunss 45615 dvnmul 45981 stoweidlem17 46055 dirkertrigeqlem1 46136 etransclem24 46296 etransclem35 46307 |
| Copyright terms: Public domain | W3C validator |