| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15710 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Σcsu 15707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-sum 15708 |
| This theorem is referenced by: sumeq12i 15720 fsump1i 15790 fsum2d 15792 fsumxp 15793 isumnn0nn 15863 arisum 15881 arisum2 15882 geo2sum 15894 bpoly0 16071 bpoly1 16072 bpoly2 16078 bpoly3 16079 bpoly4 16080 efsep 16133 ef4p 16136 rpnnen2lem12 16248 ovolicc2lem4 25478 itg10 25646 dveflem 25940 dvply1 26248 vieta1lem2 26276 aaliou3lem4 26311 dvtaylp 26335 pserdvlem2 26395 advlogexp 26621 log2ublem2 26914 log2ublem3 26915 log2ub 26916 ftalem5 27044 cht1 27132 1sgmprm 27167 lgsquadlem2 27349 axlowdimlem16 28941 finsumvtxdg2ssteplem4 29533 rusgrnumwwlks 29961 cos9thpiminplylem3 33823 signsvf0 34617 signsvf1 34618 repr0 34648 sumeq12si 36226 cbvsumvw2 36269 sumcubes 42329 k0004val0 44145 binomcxplemnotnn0 44347 fsumiunss 45571 dvnmul 45939 stoweidlem17 46013 dirkertrigeqlem1 46094 etransclem24 46254 etransclem35 46265 |
| Copyright terms: Public domain | W3C validator |