| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15662 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 df-sum 15660 |
| This theorem is referenced by: sumeq12i 15672 fsump1i 15742 fsum2d 15744 fsumxp 15745 isumnn0nn 15815 arisum 15833 arisum2 15834 geo2sum 15846 bpoly0 16023 bpoly1 16024 bpoly2 16030 bpoly3 16031 bpoly4 16032 efsep 16085 ef4p 16088 rpnnen2lem12 16200 ovolicc2lem4 25428 itg10 25596 dveflem 25890 dvply1 26198 vieta1lem2 26226 aaliou3lem4 26261 dvtaylp 26285 pserdvlem2 26345 advlogexp 26571 log2ublem2 26864 log2ublem3 26865 log2ub 26866 ftalem5 26994 cht1 27082 1sgmprm 27117 lgsquadlem2 27299 axlowdimlem16 28891 finsumvtxdg2ssteplem4 29483 rusgrnumwwlks 29911 cos9thpiminplylem3 33781 signsvf0 34578 signsvf1 34579 repr0 34609 sumeq12si 36198 cbvsumvw2 36241 sumcubes 42308 k0004val0 44150 binomcxplemnotnn0 44352 fsumiunss 45580 dvnmul 45948 stoweidlem17 46022 dirkertrigeqlem1 46103 etransclem24 46263 etransclem35 46274 |
| Copyright terms: Public domain | W3C validator |