| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15655 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 df-sum 15653 |
| This theorem is referenced by: sumeq12i 15665 fsump1i 15735 fsum2d 15737 fsumxp 15738 isumnn0nn 15808 arisum 15826 arisum2 15827 geo2sum 15839 bpoly0 16016 bpoly1 16017 bpoly2 16023 bpoly3 16024 bpoly4 16025 efsep 16078 ef4p 16081 rpnnen2lem12 16193 ovolicc2lem4 25421 itg10 25589 dveflem 25883 dvply1 26191 vieta1lem2 26219 aaliou3lem4 26254 dvtaylp 26278 pserdvlem2 26338 advlogexp 26564 log2ublem2 26857 log2ublem3 26858 log2ub 26859 ftalem5 26987 cht1 27075 1sgmprm 27110 lgsquadlem2 27292 axlowdimlem16 28884 finsumvtxdg2ssteplem4 29476 rusgrnumwwlks 29904 cos9thpiminplylem3 33774 signsvf0 34571 signsvf1 34572 repr0 34602 sumeq12si 36191 cbvsumvw2 36234 sumcubes 42301 k0004val0 44143 binomcxplemnotnn0 44345 fsumiunss 45573 dvnmul 45941 stoweidlem17 46015 dirkertrigeqlem1 46096 etransclem24 46256 etransclem35 46267 |
| Copyright terms: Public domain | W3C validator |