Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 15328 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 df-sum 15326 |
This theorem is referenced by: sumeq12i 15340 fsump1i 15409 fsum2d 15411 fsumxp 15412 isumnn0nn 15482 arisum 15500 arisum2 15501 geo2sum 15513 bpoly0 15688 bpoly1 15689 bpoly2 15695 bpoly3 15696 bpoly4 15697 efsep 15747 ef4p 15750 rpnnen2lem12 15862 ovolicc2lem4 24589 itg10 24757 dveflem 25048 dvply1 25349 vieta1lem2 25376 aaliou3lem4 25411 dvtaylp 25434 pserdvlem2 25492 advlogexp 25715 log2ublem2 26002 log2ublem3 26003 log2ub 26004 ftalem5 26131 cht1 26219 1sgmprm 26252 lgsquadlem2 26434 axlowdimlem16 27228 finsumvtxdg2ssteplem4 27818 rusgrnumwwlks 28240 signsvf0 32459 signsvf1 32460 repr0 32491 k0004val0 41653 binomcxplemnotnn0 41863 fsumiunss 43006 dvnmul 43374 stoweidlem17 43448 dirkertrigeqlem1 43529 etransclem24 43689 etransclem35 43700 |
Copyright terms: Public domain | W3C validator |