![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 15737 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-sum 15735 |
This theorem is referenced by: sumeq12i 15747 fsump1i 15817 fsum2d 15819 fsumxp 15820 isumnn0nn 15890 arisum 15908 arisum2 15909 geo2sum 15921 bpoly0 16098 bpoly1 16099 bpoly2 16105 bpoly3 16106 bpoly4 16107 efsep 16158 ef4p 16161 rpnnen2lem12 16273 ovolicc2lem4 25574 itg10 25742 dveflem 26037 dvply1 26343 vieta1lem2 26371 aaliou3lem4 26406 dvtaylp 26430 pserdvlem2 26490 advlogexp 26715 log2ublem2 27008 log2ublem3 27009 log2ub 27010 ftalem5 27138 cht1 27226 1sgmprm 27261 lgsquadlem2 27443 axlowdimlem16 28990 finsumvtxdg2ssteplem4 29584 rusgrnumwwlks 30007 signsvf0 34557 signsvf1 34558 repr0 34588 sumeq12si 36167 cbvsumvw2 36212 sumcubes 42301 k0004val0 44116 binomcxplemnotnn0 44325 fsumiunss 45496 dvnmul 45864 stoweidlem17 45938 dirkertrigeqlem1 46019 etransclem24 46179 etransclem35 46190 |
Copyright terms: Public domain | W3C validator |