Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 15400 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seq 13722 df-sum 15398 |
This theorem is referenced by: sumeq12i 15412 fsump1i 15481 fsum2d 15483 fsumxp 15484 isumnn0nn 15554 arisum 15572 arisum2 15573 geo2sum 15585 bpoly0 15760 bpoly1 15761 bpoly2 15767 bpoly3 15768 bpoly4 15769 efsep 15819 ef4p 15822 rpnnen2lem12 15934 ovolicc2lem4 24684 itg10 24852 dveflem 25143 dvply1 25444 vieta1lem2 25471 aaliou3lem4 25506 dvtaylp 25529 pserdvlem2 25587 advlogexp 25810 log2ublem2 26097 log2ublem3 26098 log2ub 26099 ftalem5 26226 cht1 26314 1sgmprm 26347 lgsquadlem2 26529 axlowdimlem16 27325 finsumvtxdg2ssteplem4 27915 rusgrnumwwlks 28339 signsvf0 32559 signsvf1 32560 repr0 32591 k0004val0 41764 binomcxplemnotnn0 41974 fsumiunss 43116 dvnmul 43484 stoweidlem17 43558 dirkertrigeqlem1 43639 etransclem24 43799 etransclem35 43810 |
Copyright terms: Public domain | W3C validator |