| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 15596 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seq 13909 df-sum 15594 |
| This theorem is referenced by: sumeq12i 15606 fsump1i 15676 fsum2d 15678 fsumxp 15679 isumnn0nn 15749 arisum 15767 arisum2 15768 geo2sum 15780 bpoly0 15957 bpoly1 15958 bpoly2 15964 bpoly3 15965 bpoly4 15966 efsep 16019 ef4p 16022 rpnnen2lem12 16134 ovolicc2lem4 25419 itg10 25587 dveflem 25881 dvply1 26189 vieta1lem2 26217 aaliou3lem4 26252 dvtaylp 26276 pserdvlem2 26336 advlogexp 26562 log2ublem2 26855 log2ublem3 26856 log2ub 26857 ftalem5 26985 cht1 27073 1sgmprm 27108 lgsquadlem2 27290 axlowdimlem16 28902 finsumvtxdg2ssteplem4 29494 rusgrnumwwlks 29919 cos9thpiminplylem3 33751 signsvf0 34548 signsvf1 34549 repr0 34579 sumeq12si 36177 cbvsumvw2 36220 sumcubes 42286 k0004val0 44127 binomcxplemnotnn0 44329 fsumiunss 45556 dvnmul 45924 stoweidlem17 45998 dirkertrigeqlem1 46079 etransclem24 46239 etransclem35 46250 |
| Copyright terms: Public domain | W3C validator |