MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsumv Structured version   Visualization version   GIF version

Theorem cbvsumv 15717
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumv Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable groups:   𝑗,𝑘   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvsumv
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.1 . . . . . . . . . . . . 13 (𝑗 = 𝑘𝐵 = 𝐶)
21cbvcsbv 3891 . . . . . . . . . . . 12 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶
32a1i 11 . . . . . . . . . . 11 (⊤ → 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶)
43ifeq1d 4525 . . . . . . . . . 10 (⊤ → if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
54mpteq2dv 5220 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
65seqeq3d 14032 . . . . . . . 8 (⊤ → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
76breq1d 5134 . . . . . . 7 (⊤ → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
87mptru 1547 . . . . . 6 (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)
98anbi2i 623 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
109rexbii 3084 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
111cbvcsbv 3891 . . . . . . . . . . . . 13 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
1211mpteq2i 5222 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
1312a1i 11 . . . . . . . . . . 11 (⊤ → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1413seqeq3d 14032 . . . . . . . . . 10 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
1514mptru 1547 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1615fveq1i 6882 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)
1716eqeq2i 2749 . . . . . . 7 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
1817anbi2i 623 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
1918exbii 1848 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2019rexbii 3084 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2110, 20orbi12i 914 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2221iotabii 6521 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
23 df-sum 15708 . 2 Σ𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))))
24 df-sum 15708 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2522, 23, 243eqtr4i 2769 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wex 1779  wcel 2109  wrex 3061  csb 3879  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  cio 6487  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cn 12245  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024  cli 15505  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seq 14025  df-sum 15708
This theorem is referenced by:  isumge0  15787  telfsumo  15823  fsumparts  15827  binomlem  15850  incexclem  15857  pwdif  15889  mertenslem1  15905  mertens  15907  binomfallfaclem2  16061  bpolyval  16070  efaddlem  16114  pwp1fsum  16415  bitsinv2  16467  prmreclem6  16946  ovolicc2lem4  25478  uniioombllem6  25546  plymullem1  26176  plyadd  26179  plymul  26180  coeeu  26187  coeid  26200  dvply1  26248  vieta1  26277  aaliou3  26316  abelthlem8  26406  abelthlem9  26407  abelth  26408  logtayl  26626  ftalem2  27041  ftalem6  27045  dchrsum2  27236  sumdchr2  27238  dchrisumlem1  27457  dchrisum  27460  dchrisum0fval  27473  dchrisum0ff  27475  rpvmasum  27494  mulog2sumlem1  27502  2vmadivsumlem  27508  logsqvma  27510  logsqvma2  27511  selberg  27516  chpdifbndlem1  27521  selberg3lem1  27525  selberg4lem1  27528  pntsval  27540  pntsval2  27544  pntpbnd1  27554  pntlemo  27575  axsegconlem9  28909  hashunif  32790  eulerpartlems  34397  eulerpartlemgs2  34417  breprexplema  34667  breprexplemc  34669  breprexp  34670  hgt750lema  34694  fwddifnp1  36188  cbvsumvw2  36269  sticksstones16  42180  sticksstones17  42181  sticksstones18  42182  sticksstones21  42185  binomcxplemnotnn0  44347  mccl  45594  sumnnodd  45626  dvnprodlem1  45942  dvnprodlem3  45944  dvnprod  45945  fourierdlem73  46175  fourierdlem112  46214  fourierdlem113  46215  etransclem11  46241  etransclem32  46262  etransclem35  46265  etransc  46279  fsumlesge0  46373  meaiuninclem  46476  omeiunltfirp  46515  hoidmvlelem3  46593  altgsumbcALT  48295  nn0sumshdiglemA  48566  nn0sumshdiglemB  48567
  Copyright terms: Public domain W3C validator