MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsumv Structured version   Visualization version   GIF version

Theorem cbvsumv 15336
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumv Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2906 . 2 𝑘𝐴
3 nfcv 2906 . 2 𝑗𝐴
4 nfcv 2906 . 2 𝑘𝐵
5 nfcv 2906 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvsum 15335 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seq 13650  df-sum 15326
This theorem is referenced by:  isumge0  15406  telfsumo  15442  fsumparts  15446  binomlem  15469  incexclem  15476  pwdif  15508  mertenslem1  15524  mertens  15526  binomfallfaclem2  15678  bpolyval  15687  efaddlem  15730  pwp1fsum  16028  bitsinv2  16078  prmreclem6  16550  ovolicc2lem4  24589  uniioombllem6  24657  plymullem1  25280  plyadd  25283  plymul  25284  coeeu  25291  coeid  25304  dvply1  25349  vieta1  25377  aaliou3  25416  abelthlem8  25503  abelthlem9  25504  abelth  25505  logtayl  25720  ftalem2  26128  ftalem6  26132  dchrsum2  26321  sumdchr2  26323  dchrisumlem1  26542  dchrisum  26545  dchrisum0fval  26558  dchrisum0ff  26560  rpvmasum  26579  mulog2sumlem1  26587  2vmadivsumlem  26593  logsqvma  26595  logsqvma2  26596  selberg  26601  chpdifbndlem1  26606  selberg3lem1  26610  selberg4lem1  26613  pntsval  26625  pntsval2  26629  pntpbnd1  26639  pntlemo  26660  axsegconlem9  27196  hashunif  31028  eulerpartlems  32227  eulerpartlemgs2  32247  breprexplema  32510  breprexplemc  32512  breprexp  32513  hgt750lema  32537  fwddifnp1  34394  sticksstones16  40046  sticksstones17  40047  sticksstones18  40048  sticksstones21  40051  binomcxplemnotnn0  41863  mccl  43029  sumnnodd  43061  dvnprodlem1  43377  dvnprodlem3  43379  dvnprod  43380  fourierdlem73  43610  fourierdlem112  43649  fourierdlem113  43650  etransclem11  43676  etransclem32  43697  etransclem35  43700  etransc  43714  fsumlesge0  43805  meaiuninclem  43908  omeiunltfirp  43947  hoidmvlelem3  44025  altgsumbcALT  45577  nn0sumshdiglemA  45853  nn0sumshdiglemB  45854
  Copyright terms: Public domain W3C validator