Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d4 Structured version   Visualization version   GIF version

Theorem cdleme17d4 39881
Description: TODO: FIX COMMENT. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b 𝐡 = (Baseβ€˜πΎ)
cdlemef46.l ≀ = (leβ€˜πΎ)
cdlemef46.j ∨ = (joinβ€˜πΎ)
cdlemef46.m ∧ = (meetβ€˜πΎ)
cdlemef46.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef46.h 𝐻 = (LHypβ€˜πΎ)
cdlemef46.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef46.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs46.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef46.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
Assertion
Ref Expression
cdleme17d4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑑)   𝐸(𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdleme17d4
StepHypRef Expression
1 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
2 cdlemef46.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 cdlemef46.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
42, 3atbase 38672 . . . 4 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
51, 4syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐡)
6 cdlemef46.f . . . 4 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
76cdleme31id 39778 . . 3 ((𝑃 ∈ 𝐡 ∧ 𝑃 = 𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
85, 7sylan 579 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
9 simpr 484 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ 𝑃 = 𝑄)
108, 9eqtrd 2766 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  β¦‹csb 3888  ifcif 4523   class class class wbr 5141   ↦ cmpt 5224  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-ats 38650
This theorem is referenced by:  cdleme17d  39882
  Copyright terms: Public domain W3C validator