Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hne0 | Structured version Visualization version GIF version |
Description: Hilbert space has a nonzero vector iff it is not trivial. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hne0 | ⊢ ( ℋ ≠ 0ℋ ↔ ∃𝑥 ∈ ℋ 𝑥 ≠ 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch 29170 | . 2 ⊢ ℋ ∈ Cℋ | |
2 | 1 | chne0i 29380 | 1 ⊢ ( ℋ ≠ 0ℋ ↔ ∃𝑥 ∈ ℋ 𝑥 ≠ 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ≠ wne 2934 ∃wrex 3054 ℋchba 28846 0ℎc0v 28851 0ℋc0h 28862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-1cn 10666 ax-addcl 10668 ax-hilex 28926 ax-hfvadd 28927 ax-hv0cl 28930 ax-hfvmul 28932 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-map 8432 df-nn 11710 df-hlim 28899 df-sh 29134 df-ch 29148 df-ch0 29180 |
This theorem is referenced by: nmopun 29941 |
Copyright terms: Public domain | W3C validator |