![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chne0 | Structured version Visualization version GIF version |
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chne0 | ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3007 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ≠ 0ℋ ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ)) | |
2 | rexeq 3313 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ)) | |
3 | 1, 2 | bibi12d 346 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ))) |
4 | h0elch 30239 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
5 | 4 | elimel 4560 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
6 | 5 | chne0i 30437 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ) |
7 | 3, 6 | dedth 4549 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ∃wrex 3074 ifcif 4491 0ℎc0v 29908 Cℋ cch 29913 0ℋc0h 29919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 ax-addf 11137 ax-mulf 11138 ax-hilex 29983 ax-hfvadd 29984 ax-hvcom 29985 ax-hvass 29986 ax-hv0cl 29987 ax-hvaddid 29988 ax-hfvmul 29989 ax-hvmulid 29990 ax-hvmulass 29991 ax-hvdistr1 29992 ax-hvdistr2 29993 ax-hvmul0 29994 ax-hfi 30063 ax-his1 30066 ax-his2 30067 ax-his3 30068 ax-his4 30069 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-map 8774 df-pm 8775 df-en 8891 df-dom 8892 df-sdom 8893 df-sup 9385 df-inf 9386 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-n0 12421 df-z 12507 df-uz 12771 df-q 12881 df-rp 12923 df-xneg 13040 df-xadd 13041 df-xmul 13042 df-icc 13278 df-seq 13914 df-exp 13975 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-topgen 17332 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-top 22259 df-topon 22276 df-bases 22312 df-lm 22596 df-haus 22682 df-grpo 29477 df-gid 29478 df-ginv 29479 df-gdiv 29480 df-ablo 29529 df-vc 29543 df-nv 29576 df-va 29579 df-ba 29580 df-sm 29581 df-0v 29582 df-vs 29583 df-nmcv 29584 df-ims 29585 df-hnorm 29952 df-hvsub 29955 df-hlim 29956 df-sh 30191 df-ch 30205 df-ch0 30237 |
This theorem is referenced by: atom1d 31337 |
Copyright terms: Public domain | W3C validator |