Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chne0 | Structured version Visualization version GIF version |
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chne0 | ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3008 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ≠ 0ℋ ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ)) | |
2 | rexeq 3342 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ)) | |
3 | 1, 2 | bibi12d 346 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ))) |
4 | h0elch 29605 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
5 | 4 | elimel 4534 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
6 | 5 | chne0i 29803 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ≠ 0ℋ ↔ ∃𝑥 ∈ if (𝐴 ∈ Cℋ , 𝐴, 0ℋ)𝑥 ≠ 0ℎ) |
7 | 3, 6 | dedth 4523 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ifcif 4465 0ℎc0v 29274 Cℋ cch 29279 0ℋc0h 29285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 ax-addf 10943 ax-mulf 10944 ax-hilex 29349 ax-hfvadd 29350 ax-hvcom 29351 ax-hvass 29352 ax-hv0cl 29353 ax-hvaddid 29354 ax-hfvmul 29355 ax-hvmulid 29356 ax-hvmulass 29357 ax-hvdistr1 29358 ax-hvdistr2 29359 ax-hvmul0 29360 ax-hfi 29429 ax-his1 29432 ax-his2 29433 ax-his3 29434 ax-his4 29435 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-map 8592 df-pm 8593 df-en 8709 df-dom 8710 df-sdom 8711 df-sup 9171 df-inf 9172 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-n0 12226 df-z 12312 df-uz 12574 df-q 12680 df-rp 12722 df-xneg 12839 df-xadd 12840 df-xmul 12841 df-icc 13077 df-seq 13712 df-exp 13773 df-cj 14800 df-re 14801 df-im 14802 df-sqrt 14936 df-abs 14937 df-topgen 17144 df-psmet 20579 df-xmet 20580 df-met 20581 df-bl 20582 df-mopn 20583 df-top 22033 df-topon 22050 df-bases 22086 df-lm 22370 df-haus 22456 df-grpo 28843 df-gid 28844 df-ginv 28845 df-gdiv 28846 df-ablo 28895 df-vc 28909 df-nv 28942 df-va 28945 df-ba 28946 df-sm 28947 df-0v 28948 df-vs 28949 df-nmcv 28950 df-ims 28951 df-hnorm 29318 df-hvsub 29321 df-hlim 29322 df-sh 29557 df-ch 29571 df-ch0 29603 |
This theorem is referenced by: atom1d 30703 |
Copyright terms: Public domain | W3C validator |