Step | Hyp | Ref
| Expression |
1 | | pjhmop.1 |
. . . 4
⊢ 𝐻 ∈
Cℋ |
2 | 1 | pjfi 30066 |
. . 3
⊢
(projℎ‘𝐻): ℋ⟶ ℋ |
3 | | nmopval 30218 |
. . 3
⊢
((projℎ‘𝐻): ℋ⟶ ℋ →
(normop‘(projℎ‘𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}, ℝ*, <
)) |
4 | 2, 3 | ax-mp 5 |
. 2
⊢
(normop‘(projℎ‘𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}, ℝ*, <
) |
5 | | vex 3436 |
. . . . . 6
⊢ 𝑧 ∈ V |
6 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)) ↔ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))) |
7 | 6 | anbi2d 629 |
. . . . . . 7
⊢ (𝑥 = 𝑧 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))))) |
8 | 7 | rexbidv 3226 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))))) |
9 | 5, 8 | elab 3609 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))) |
10 | | pjnorm 30086 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈
Cℋ ∧ 𝑦 ∈ ℋ) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ (normℎ‘𝑦)) |
11 | 1, 10 | mpan 687 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℋ →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ (normℎ‘𝑦)) |
12 | 1 | pjhcli 29780 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℋ →
((projℎ‘𝐻)‘𝑦) ∈ ℋ) |
13 | | normcl 29487 |
. . . . . . . . . . . 12
⊢
(((projℎ‘𝐻)‘𝑦) ∈ ℋ →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ∈ ℝ) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℋ →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ∈ ℝ) |
15 | | normcl 29487 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℋ →
(normℎ‘𝑦) ∈ ℝ) |
16 | | 1re 10975 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
17 | | letr 11069 |
. . . . . . . . . . . 12
⊢
(((normℎ‘((projℎ‘𝐻)‘𝑦)) ∈ ℝ ∧
(normℎ‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ)
→ (((normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ (normℎ‘𝑦) ∧
(normℎ‘𝑦) ≤ 1) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1)) |
18 | 16, 17 | mp3an3 1449 |
. . . . . . . . . . 11
⊢
(((normℎ‘((projℎ‘𝐻)‘𝑦)) ∈ ℝ ∧
(normℎ‘𝑦) ∈ ℝ) →
(((normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ (normℎ‘𝑦) ∧
(normℎ‘𝑦) ≤ 1) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1)) |
19 | 14, 15, 18 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℋ →
(((normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ (normℎ‘𝑦) ∧
(normℎ‘𝑦) ≤ 1) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1)) |
20 | 11, 19 | mpand 692 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℋ →
((normℎ‘𝑦) ≤ 1 →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1)) |
21 | 20 | imp 407 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℋ ∧
(normℎ‘𝑦) ≤ 1) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1) |
22 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔
(normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1)) |
23 | 22 | biimparc 480 |
. . . . . . . 8
⊢
(((normℎ‘((projℎ‘𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) → 𝑧 ≤ 1) |
24 | 21, 23 | sylan 580 |
. . . . . . 7
⊢ (((𝑦 ∈ ℋ ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) → 𝑧 ≤ 1) |
25 | 24 | expl 458 |
. . . . . 6
⊢ (𝑦 ∈ ℋ →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) → 𝑧 ≤ 1)) |
26 | 25 | rexlimiv 3209 |
. . . . 5
⊢
(∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑧 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) → 𝑧 ≤ 1) |
27 | 9, 26 | sylbi 216 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} → 𝑧 ≤ 1) |
28 | 27 | rgen 3074 |
. . 3
⊢
∀𝑧 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 ≤ 1 |
29 | 1 | cheli 29594 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) → 𝑦 ∈ ℋ) |
31 | 29, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 → (normℎ‘𝑦) ∈
ℝ) |
32 | | eqle 11077 |
. . . . . . . . . 10
⊢
(((normℎ‘𝑦) ∈ ℝ ∧
(normℎ‘𝑦) = 1) →
(normℎ‘𝑦) ≤ 1) |
33 | 31, 32 | sylan 580 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) →
(normℎ‘𝑦) ≤ 1) |
34 | | pjid 30057 |
. . . . . . . . . . . . 13
⊢ ((𝐻 ∈
Cℋ ∧ 𝑦 ∈ 𝐻) →
((projℎ‘𝐻)‘𝑦) = 𝑦) |
35 | 1, 34 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐻 →
((projℎ‘𝐻)‘𝑦) = 𝑦) |
36 | 35 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐻 →
(normℎ‘((projℎ‘𝐻)‘𝑦)) = (normℎ‘𝑦)) |
37 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) →
(normℎ‘((projℎ‘𝐻)‘𝑦)) = (normℎ‘𝑦)) |
38 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) →
(normℎ‘𝑦) = 1) |
39 | 37, 38 | eqtr2d 2779 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) → 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) |
40 | 30, 33, 39 | jca32 516 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐻 ∧ (normℎ‘𝑦) = 1) → (𝑦 ∈ ℋ ∧
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦))))) |
41 | 40 | reximi2 3175 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐻
(normℎ‘𝑦) = 1 → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))) |
42 | 1 | chne0i 29815 |
. . . . . . . 8
⊢ (𝐻 ≠ 0ℋ ↔
∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
43 | 1 | chshii 29589 |
. . . . . . . . 9
⊢ 𝐻 ∈
Sℋ |
44 | 43 | norm1exi 29612 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐻 𝑦 ≠ 0ℎ ↔
∃𝑦 ∈ 𝐻
(normℎ‘𝑦) = 1) |
45 | 42, 44 | bitri 274 |
. . . . . . 7
⊢ (𝐻 ≠ 0ℋ ↔
∃𝑦 ∈ 𝐻
(normℎ‘𝑦) = 1) |
46 | | 1ex 10971 |
. . . . . . . 8
⊢ 1 ∈
V |
47 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)) ↔ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))) |
48 | 47 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = 1 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦))))) |
49 | 48 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 1 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦))))) |
50 | 46, 49 | elab 3609 |
. . . . . . 7
⊢ (1 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))) |
51 | 41, 45, 50 | 3imtr4i 292 |
. . . . . 6
⊢ (𝐻 ≠ 0ℋ →
1 ∈ {𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}) |
52 | | breq2 5078 |
. . . . . . 7
⊢ (𝑤 = 1 → (𝑧 < 𝑤 ↔ 𝑧 < 1)) |
53 | 52 | rspcev 3561 |
. . . . . 6
⊢ ((1
∈ {𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤) |
54 | 51, 53 | sylan 580 |
. . . . 5
⊢ ((𝐻 ≠ 0ℋ ∧
𝑧 < 1) →
∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤) |
55 | 54 | ex 413 |
. . . 4
⊢ (𝐻 ≠ 0ℋ →
(𝑧 < 1 →
∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤)) |
56 | 55 | ralrimivw 3104 |
. . 3
⊢ (𝐻 ≠ 0ℋ →
∀𝑧 ∈ ℝ
(𝑧 < 1 →
∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤)) |
57 | | nmopsetretHIL 30226 |
. . . . . 6
⊢
((projℎ‘𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ⊆ ℝ) |
58 | 2, 57 | ax-mp 5 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ⊆ ℝ |
59 | | ressxr 11019 |
. . . . 5
⊢ ℝ
⊆ ℝ* |
60 | 58, 59 | sstri 3930 |
. . . 4
⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ⊆
ℝ* |
61 | | 1xr 11034 |
. . . 4
⊢ 1 ∈
ℝ* |
62 | | supxr2 13048 |
. . . 4
⊢ ((({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1
∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}, ℝ*, < ) =
1) |
63 | 60, 61, 62 | mpanl12 699 |
. . 3
⊢
((∀𝑧 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}, ℝ*, < ) =
1) |
64 | 28, 56, 63 | sylancr 587 |
. 2
⊢ (𝐻 ≠ 0ℋ →
sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 =
(normℎ‘((projℎ‘𝐻)‘𝑦)))}, ℝ*, < ) =
1) |
65 | 4, 64 | eqtrid 2790 |
1
⊢ (𝐻 ≠ 0ℋ →
(normop‘(projℎ‘𝐻)) = 1) |