HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnmopi Structured version   Visualization version   GIF version

Theorem pjnmopi 32096
Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjhmop.1 𝐻C
Assertion
Ref Expression
pjnmopi (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)

Proof of Theorem pjnmopi
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhmop.1 . . . 4 𝐻C
21pjfi 31652 . . 3 (proj𝐻): ℋ⟶ ℋ
3 nmopval 31804 . . 3 ((proj𝐻): ℋ⟶ ℋ → (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ))
42, 3ax-mp 5 . 2 (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < )
5 vex 3440 . . . . . 6 𝑧 ∈ V
6 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
76anbi2d 630 . . . . . . 7 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
87rexbidv 3153 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
95, 8elab 3635 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
10 pjnorm 31672 . . . . . . . . . . 11 ((𝐻C𝑦 ∈ ℋ) → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
111, 10mpan 690 . . . . . . . . . 10 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
121pjhcli 31366 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → ((proj𝐻)‘𝑦) ∈ ℋ)
13 normcl 31073 . . . . . . . . . . . 12 (((proj𝐻)‘𝑦) ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
15 normcl 31073 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
16 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
17 letr 11210 . . . . . . . . . . . 12 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1816, 17mp3an3 1452 . . . . . . . . . . 11 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1914, 15, 18syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℋ → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2011, 19mpand 695 . . . . . . . . 9 (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2120imp 406 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1)
22 breq1 5095 . . . . . . . . 9 (𝑧 = (norm‘((proj𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔ (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2322biimparc 479 . . . . . . . 8 (((norm‘((proj𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2421, 23sylan 580 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2524expl 457 . . . . . 6 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1))
2625rexlimiv 3123 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
279, 26sylbi 217 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} → 𝑧 ≤ 1)
2827rgen 3046 . . 3 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1
291cheli 31180 . . . . . . . . . 10 (𝑦𝐻𝑦 ∈ ℋ)
3029adantr 480 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 𝑦 ∈ ℋ)
3129, 15syl 17 . . . . . . . . . 10 (𝑦𝐻 → (norm𝑦) ∈ ℝ)
32 eqle 11218 . . . . . . . . . 10 (((norm𝑦) ∈ ℝ ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
3331, 32sylan 580 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
34 pjid 31643 . . . . . . . . . . . . 13 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
351, 34mpan 690 . . . . . . . . . . . 12 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
3635fveq2d 6826 . . . . . . . . . . 11 (𝑦𝐻 → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
3736adantr 480 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
38 simpr 484 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) = 1)
3937, 38eqtr2d 2765 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 1 = (norm‘((proj𝐻)‘𝑦)))
4030, 33, 39jca32 515 . . . . . . . 8 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (𝑦 ∈ ℋ ∧ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4140reximi2 3062 . . . . . . 7 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
421chne0i 31401 . . . . . . . 8 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 𝑦 ≠ 0)
431chshii 31175 . . . . . . . . 9 𝐻S
4443norm1exi 31198 . . . . . . . 8 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
4542, 44bitri 275 . . . . . . 7 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
46 1ex 11111 . . . . . . . 8 1 ∈ V
47 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 1 = (norm‘((proj𝐻)‘𝑦))))
4847anbi2d 630 . . . . . . . . 9 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4948rexbidv 3153 . . . . . . . 8 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
5046, 49elab 3635 . . . . . . 7 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
5141, 45, 503imtr4i 292 . . . . . 6 (𝐻 ≠ 0 → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))})
52 breq2 5096 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5352rspcev 3577 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5451, 53sylan 580 . . . . 5 ((𝐻 ≠ 0𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5554ex 412 . . . 4 (𝐻 ≠ 0 → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
5655ralrimivw 3125 . . 3 (𝐻 ≠ 0 → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
57 nmopsetretHIL 31812 . . . . . 6 ((proj𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ)
582, 57ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ
59 ressxr 11159 . . . . 5 ℝ ⊆ ℝ*
6058, 59sstri 3945 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ*
61 1xr 11174 . . . 4 1 ∈ ℝ*
62 supxr2 13216 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6360, 61, 62mpanl12 702 . . 3 ((∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6428, 56, 63sylancr 587 . 2 (𝐻 ≠ 0 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
654, 64eqtrid 2776 1 (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  wf 6478  cfv 6482  supcsup 9330  cr 11008  1c1 11010  *cxr 11148   < clt 11149  cle 11150  chba 30867  normcno 30871  0c0v 30872   C cch 30877  0c0h 30883  projcpjh 30885  normopcnop 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvmulass 30955  ax-hvdistr1 30956  ax-hvdistr2 30957  ax-hvmul0 30958  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032  ax-his4 31033  ax-hcompl 31150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-dip 30649  df-ssp 30670  df-ph 30761  df-cbn 30811  df-hnorm 30916  df-hba 30917  df-hvsub 30919  df-hlim 30920  df-hcau 30921  df-sh 31155  df-ch 31169  df-oc 31200  df-ch0 31201  df-shs 31256  df-pjh 31343  df-nmop 31787
This theorem is referenced by:  pjbdlni  32097
  Copyright terms: Public domain W3C validator