HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnmopi Structured version   Visualization version   GIF version

Theorem pjnmopi 32167
Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjhmop.1 𝐻C
Assertion
Ref Expression
pjnmopi (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)

Proof of Theorem pjnmopi
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhmop.1 . . . 4 𝐻C
21pjfi 31723 . . 3 (proj𝐻): ℋ⟶ ℋ
3 nmopval 31875 . . 3 ((proj𝐻): ℋ⟶ ℋ → (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ))
42, 3ax-mp 5 . 2 (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < )
5 vex 3484 . . . . . 6 𝑧 ∈ V
6 eqeq1 2741 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
76anbi2d 630 . . . . . . 7 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
87rexbidv 3179 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
95, 8elab 3679 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
10 pjnorm 31743 . . . . . . . . . . 11 ((𝐻C𝑦 ∈ ℋ) → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
111, 10mpan 690 . . . . . . . . . 10 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
121pjhcli 31437 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → ((proj𝐻)‘𝑦) ∈ ℋ)
13 normcl 31144 . . . . . . . . . . . 12 (((proj𝐻)‘𝑦) ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
15 normcl 31144 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
16 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
17 letr 11355 . . . . . . . . . . . 12 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1816, 17mp3an3 1452 . . . . . . . . . . 11 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1914, 15, 18syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℋ → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2011, 19mpand 695 . . . . . . . . 9 (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2120imp 406 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1)
22 breq1 5146 . . . . . . . . 9 (𝑧 = (norm‘((proj𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔ (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2322biimparc 479 . . . . . . . 8 (((norm‘((proj𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2421, 23sylan 580 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2524expl 457 . . . . . 6 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1))
2625rexlimiv 3148 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
279, 26sylbi 217 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} → 𝑧 ≤ 1)
2827rgen 3063 . . 3 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1
291cheli 31251 . . . . . . . . . 10 (𝑦𝐻𝑦 ∈ ℋ)
3029adantr 480 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 𝑦 ∈ ℋ)
3129, 15syl 17 . . . . . . . . . 10 (𝑦𝐻 → (norm𝑦) ∈ ℝ)
32 eqle 11363 . . . . . . . . . 10 (((norm𝑦) ∈ ℝ ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
3331, 32sylan 580 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
34 pjid 31714 . . . . . . . . . . . . 13 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
351, 34mpan 690 . . . . . . . . . . . 12 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
3635fveq2d 6910 . . . . . . . . . . 11 (𝑦𝐻 → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
3736adantr 480 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
38 simpr 484 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) = 1)
3937, 38eqtr2d 2778 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 1 = (norm‘((proj𝐻)‘𝑦)))
4030, 33, 39jca32 515 . . . . . . . 8 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (𝑦 ∈ ℋ ∧ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4140reximi2 3079 . . . . . . 7 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
421chne0i 31472 . . . . . . . 8 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 𝑦 ≠ 0)
431chshii 31246 . . . . . . . . 9 𝐻S
4443norm1exi 31269 . . . . . . . 8 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
4542, 44bitri 275 . . . . . . 7 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
46 1ex 11257 . . . . . . . 8 1 ∈ V
47 eqeq1 2741 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 1 = (norm‘((proj𝐻)‘𝑦))))
4847anbi2d 630 . . . . . . . . 9 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4948rexbidv 3179 . . . . . . . 8 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
5046, 49elab 3679 . . . . . . 7 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
5141, 45, 503imtr4i 292 . . . . . 6 (𝐻 ≠ 0 → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))})
52 breq2 5147 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5352rspcev 3622 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5451, 53sylan 580 . . . . 5 ((𝐻 ≠ 0𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5554ex 412 . . . 4 (𝐻 ≠ 0 → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
5655ralrimivw 3150 . . 3 (𝐻 ≠ 0 → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
57 nmopsetretHIL 31883 . . . . . 6 ((proj𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ)
582, 57ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ
59 ressxr 11305 . . . . 5 ℝ ⊆ ℝ*
6058, 59sstri 3993 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ*
61 1xr 11320 . . . 4 1 ∈ ℝ*
62 supxr2 13356 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6360, 61, 62mpanl12 702 . . 3 ((∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6428, 56, 63sylancr 587 . 2 (𝐻 ≠ 0 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
654, 64eqtrid 2789 1 (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  wf 6557  cfv 6561  supcsup 9480  cr 11154  1c1 11156  *cxr 11294   < clt 11295  cle 11296  chba 30938  normcno 30942  0c0v 30943   C cch 30948  0c0h 30954  projcpjh 30956  normopcnop 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-pjh 31414  df-nmop 31858
This theorem is referenced by:  pjbdlni  32168
  Copyright terms: Public domain W3C validator