HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnmopi Structured version   Visualization version   GIF version

Theorem pjnmopi 29940
Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjhmop.1 𝐻C
Assertion
Ref Expression
pjnmopi (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)

Proof of Theorem pjnmopi
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhmop.1 . . . 4 𝐻C
21pjfi 29496 . . 3 (proj𝐻): ℋ⟶ ℋ
3 nmopval 29648 . . 3 ((proj𝐻): ℋ⟶ ℋ → (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ))
42, 3ax-mp 5 . 2 (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < )
5 vex 3483 . . . . . 6 𝑧 ∈ V
6 eqeq1 2828 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
76anbi2d 631 . . . . . . 7 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
87rexbidv 3289 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
95, 8elab 3653 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
10 pjnorm 29516 . . . . . . . . . . 11 ((𝐻C𝑦 ∈ ℋ) → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
111, 10mpan 689 . . . . . . . . . 10 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
121pjhcli 29210 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → ((proj𝐻)‘𝑦) ∈ ℋ)
13 normcl 28917 . . . . . . . . . . . 12 (((proj𝐻)‘𝑦) ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
15 normcl 28917 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
16 1re 10641 . . . . . . . . . . . 12 1 ∈ ℝ
17 letr 10734 . . . . . . . . . . . 12 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1816, 17mp3an3 1447 . . . . . . . . . . 11 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1914, 15, 18syl2anc 587 . . . . . . . . . 10 (𝑦 ∈ ℋ → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2011, 19mpand 694 . . . . . . . . 9 (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2120imp 410 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1)
22 breq1 5056 . . . . . . . . 9 (𝑧 = (norm‘((proj𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔ (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2322biimparc 483 . . . . . . . 8 (((norm‘((proj𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2421, 23sylan 583 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2524expl 461 . . . . . 6 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1))
2625rexlimiv 3272 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
279, 26sylbi 220 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} → 𝑧 ≤ 1)
2827rgen 3143 . . 3 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1
291cheli 29024 . . . . . . . . . 10 (𝑦𝐻𝑦 ∈ ℋ)
3029adantr 484 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 𝑦 ∈ ℋ)
3129, 15syl 17 . . . . . . . . . 10 (𝑦𝐻 → (norm𝑦) ∈ ℝ)
32 eqle 10742 . . . . . . . . . 10 (((norm𝑦) ∈ ℝ ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
3331, 32sylan 583 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
34 pjid 29487 . . . . . . . . . . . . 13 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
351, 34mpan 689 . . . . . . . . . . . 12 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
3635fveq2d 6667 . . . . . . . . . . 11 (𝑦𝐻 → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
3736adantr 484 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
38 simpr 488 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) = 1)
3937, 38eqtr2d 2860 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 1 = (norm‘((proj𝐻)‘𝑦)))
4030, 33, 39jca32 519 . . . . . . . 8 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (𝑦 ∈ ℋ ∧ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4140reximi2 3238 . . . . . . 7 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
421chne0i 29245 . . . . . . . 8 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 𝑦 ≠ 0)
431chshii 29019 . . . . . . . . 9 𝐻S
4443norm1exi 29042 . . . . . . . 8 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
4542, 44bitri 278 . . . . . . 7 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
46 1ex 10637 . . . . . . . 8 1 ∈ V
47 eqeq1 2828 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 1 = (norm‘((proj𝐻)‘𝑦))))
4847anbi2d 631 . . . . . . . . 9 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4948rexbidv 3289 . . . . . . . 8 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
5046, 49elab 3653 . . . . . . 7 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
5141, 45, 503imtr4i 295 . . . . . 6 (𝐻 ≠ 0 → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))})
52 breq2 5057 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5352rspcev 3609 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5451, 53sylan 583 . . . . 5 ((𝐻 ≠ 0𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5554ex 416 . . . 4 (𝐻 ≠ 0 → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
5655ralrimivw 3178 . . 3 (𝐻 ≠ 0 → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
57 nmopsetretHIL 29656 . . . . . 6 ((proj𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ)
582, 57ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ
59 ressxr 10685 . . . . 5 ℝ ⊆ ℝ*
6058, 59sstri 3962 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ*
61 1xr 10700 . . . 4 1 ∈ ℝ*
62 supxr2 12706 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6360, 61, 62mpanl12 701 . . 3 ((∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6428, 56, 63sylancr 590 . 2 (𝐻 ≠ 0 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
654, 64syl5eq 2871 1 (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  {cab 2802  wne 3014  wral 3133  wrex 3134  wss 3919   class class class wbr 5053  wf 6341  cfv 6345  supcsup 8903  cr 10536  1c1 10538  *cxr 10674   < clt 10675  cle 10676  chba 28711  normcno 28715  0c0v 28716   C cch 28721  0c0h 28727  projcpjh 28729  normopcnop 28737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617  ax-hilex 28791  ax-hfvadd 28792  ax-hvcom 28793  ax-hvass 28794  ax-hv0cl 28795  ax-hvaddid 28796  ax-hfvmul 28797  ax-hvmulid 28798  ax-hvmulass 28799  ax-hvdistr1 28800  ax-hvdistr2 28801  ax-hvmul0 28802  ax-hfi 28871  ax-his1 28874  ax-his2 28875  ax-his3 28876  ax-his4 28877  ax-hcompl 28994
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-omul 8105  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12897  df-fzo 13040  df-fl 13168  df-seq 13376  df-exp 13437  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20092  df-xmet 20093  df-met 20094  df-bl 20095  df-mopn 20096  df-fbas 20097  df-fg 20098  df-cnfld 20101  df-top 21508  df-topon 21525  df-topsp 21547  df-bases 21560  df-cld 21633  df-ntr 21634  df-cls 21635  df-nei 21712  df-cn 21841  df-cnp 21842  df-lm 21843  df-haus 21929  df-tx 22176  df-hmeo 22369  df-fil 22460  df-fm 22552  df-flim 22553  df-flf 22554  df-xms 22936  df-ms 22937  df-tms 22938  df-cfil 23868  df-cau 23869  df-cmet 23870  df-grpo 28285  df-gid 28286  df-ginv 28287  df-gdiv 28288  df-ablo 28337  df-vc 28351  df-nv 28384  df-va 28387  df-ba 28388  df-sm 28389  df-0v 28390  df-vs 28391  df-nmcv 28392  df-ims 28393  df-dip 28493  df-ssp 28514  df-ph 28605  df-cbn 28655  df-hnorm 28760  df-hba 28761  df-hvsub 28763  df-hlim 28764  df-hcau 28765  df-sh 28999  df-ch 29013  df-oc 29044  df-ch0 29045  df-shs 29100  df-pjh 29187  df-nmop 29631
This theorem is referenced by:  pjbdlni  29941
  Copyright terms: Public domain W3C validator