HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnmopi Structured version   Visualization version   GIF version

Theorem pjnmopi 30510
Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjhmop.1 𝐻C
Assertion
Ref Expression
pjnmopi (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)

Proof of Theorem pjnmopi
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhmop.1 . . . 4 𝐻C
21pjfi 30066 . . 3 (proj𝐻): ℋ⟶ ℋ
3 nmopval 30218 . . 3 ((proj𝐻): ℋ⟶ ℋ → (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ))
42, 3ax-mp 5 . 2 (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < )
5 vex 3436 . . . . . 6 𝑧 ∈ V
6 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
76anbi2d 629 . . . . . . 7 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
87rexbidv 3226 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
95, 8elab 3609 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
10 pjnorm 30086 . . . . . . . . . . 11 ((𝐻C𝑦 ∈ ℋ) → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
111, 10mpan 687 . . . . . . . . . 10 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
121pjhcli 29780 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → ((proj𝐻)‘𝑦) ∈ ℋ)
13 normcl 29487 . . . . . . . . . . . 12 (((proj𝐻)‘𝑦) ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
15 normcl 29487 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
16 1re 10975 . . . . . . . . . . . 12 1 ∈ ℝ
17 letr 11069 . . . . . . . . . . . 12 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1816, 17mp3an3 1449 . . . . . . . . . . 11 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1914, 15, 18syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℋ → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2011, 19mpand 692 . . . . . . . . 9 (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2120imp 407 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1)
22 breq1 5077 . . . . . . . . 9 (𝑧 = (norm‘((proj𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔ (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2322biimparc 480 . . . . . . . 8 (((norm‘((proj𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2421, 23sylan 580 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2524expl 458 . . . . . 6 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1))
2625rexlimiv 3209 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
279, 26sylbi 216 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} → 𝑧 ≤ 1)
2827rgen 3074 . . 3 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1
291cheli 29594 . . . . . . . . . 10 (𝑦𝐻𝑦 ∈ ℋ)
3029adantr 481 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 𝑦 ∈ ℋ)
3129, 15syl 17 . . . . . . . . . 10 (𝑦𝐻 → (norm𝑦) ∈ ℝ)
32 eqle 11077 . . . . . . . . . 10 (((norm𝑦) ∈ ℝ ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
3331, 32sylan 580 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
34 pjid 30057 . . . . . . . . . . . . 13 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
351, 34mpan 687 . . . . . . . . . . . 12 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
3635fveq2d 6778 . . . . . . . . . . 11 (𝑦𝐻 → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
3736adantr 481 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
38 simpr 485 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) = 1)
3937, 38eqtr2d 2779 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 1 = (norm‘((proj𝐻)‘𝑦)))
4030, 33, 39jca32 516 . . . . . . . 8 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (𝑦 ∈ ℋ ∧ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4140reximi2 3175 . . . . . . 7 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
421chne0i 29815 . . . . . . . 8 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 𝑦 ≠ 0)
431chshii 29589 . . . . . . . . 9 𝐻S
4443norm1exi 29612 . . . . . . . 8 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
4542, 44bitri 274 . . . . . . 7 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
46 1ex 10971 . . . . . . . 8 1 ∈ V
47 eqeq1 2742 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 1 = (norm‘((proj𝐻)‘𝑦))))
4847anbi2d 629 . . . . . . . . 9 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4948rexbidv 3226 . . . . . . . 8 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
5046, 49elab 3609 . . . . . . 7 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
5141, 45, 503imtr4i 292 . . . . . 6 (𝐻 ≠ 0 → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))})
52 breq2 5078 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5352rspcev 3561 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5451, 53sylan 580 . . . . 5 ((𝐻 ≠ 0𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5554ex 413 . . . 4 (𝐻 ≠ 0 → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
5655ralrimivw 3104 . . 3 (𝐻 ≠ 0 → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
57 nmopsetretHIL 30226 . . . . . 6 ((proj𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ)
582, 57ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ
59 ressxr 11019 . . . . 5 ℝ ⊆ ℝ*
6058, 59sstri 3930 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ*
61 1xr 11034 . . . 4 1 ∈ ℝ*
62 supxr2 13048 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6360, 61, 62mpanl12 699 . . 3 ((∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6428, 56, 63sylancr 587 . 2 (𝐻 ≠ 0 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
654, 64eqtrid 2790 1 (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  supcsup 9199  cr 10870  1c1 10872  *cxr 11008   < clt 11009  cle 11010  chba 29281  normcno 29285  0c0v 29286   C cch 29291  0c0h 29297  projcpjh 29299  normopcnop 29307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-pjh 29757  df-nmop 30201
This theorem is referenced by:  pjbdlni  30511
  Copyright terms: Public domain W3C validator