![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkiswlk | Structured version Visualization version GIF version |
Description: A closed walk is a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
clwlkiswlk | โข (๐น(ClWalksโ๐บ)๐ โ ๐น(Walksโ๐บ)๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclwlk 29631 | . 2 โข (๐น(ClWalksโ๐บ)๐ โ (๐น(Walksโ๐บ)๐ โง (๐โ0) = (๐โ(โฏโ๐น)))) | |
2 | 1 | simplbi 496 | 1 โข (๐น(ClWalksโ๐บ)๐ โ ๐น(Walksโ๐บ)๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 class class class wbr 5143 โcfv 6543 0cc0 11138 โฏchash 14321 Walkscwlks 29454 ClWalkscclwlks 29628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fv 6551 df-wlks 29457 df-clwlks 29629 |
This theorem is referenced by: clwlkclwwlkfolem 29861 |
Copyright terms: Public domain | W3C validator |