Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwlkiswlk | Structured version Visualization version GIF version |
Description: A closed walk is a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
clwlkiswlk | ⊢ (𝐹(ClWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclwlk 28190 | . 2 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝐹(ClWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5081 ‘cfv 6458 0cc0 10921 ♯chash 14094 Walkscwlks 28012 ClWalkscclwlks 28187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fv 6466 df-wlks 28015 df-clwlks 28188 |
This theorem is referenced by: clwlkclwwlkfolem 28420 |
Copyright terms: Public domain | W3C validator |