|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlkfolem | Structured version Visualization version GIF version | ||
| Description: Lemma for clwlkclwwlkfo 30028. (Contributed by AV, 25-May-2022.) | 
| Ref | Expression | 
|---|---|
| clwlkclwwlkf.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} | 
| Ref | Expression | 
|---|---|
| clwlkclwwlkfolem | ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp3 1139 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 2 | wrdlenccats1lenm1 14660 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1) = (♯‘𝑊)) | |
| 3 | 2 | eqcomd 2743 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 4 | 3 | breq2d 5155 | . . . . 5 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (1 ≤ (♯‘𝑊) ↔ 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1))) | 
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 6 | 5 | 3adant3 1133 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 7 | df-br 5144 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) ↔ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 8 | clwlkiswlk 29794 | . . . . . 6 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → 𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉)) | |
| 9 | wlklenvm1 29640 | . . . . . 6 ⊢ (𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 11 | 7, 10 | sylbir 235 | . . . 4 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 12 | 11 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | 
| 13 | 6, 12 | breqtrrd 5171 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ (♯‘𝑓)) | 
| 14 | vex 3484 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 15 | ovex 7464 | . . . . . 6 ⊢ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ V | |
| 16 | 14, 15 | op1std 8024 | . . . . 5 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1st ‘𝑐) = 𝑓) | 
| 17 | 16 | fveq2d 6910 | . . . 4 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (♯‘(1st ‘𝑐)) = (♯‘𝑓)) | 
| 18 | 17 | breq2d 5155 | . . 3 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1 ≤ (♯‘(1st ‘𝑐)) ↔ 1 ≤ (♯‘𝑓))) | 
| 19 | clwlkclwwlkf.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} | |
| 20 | 2fveq3 6911 | . . . . . 6 ⊢ (𝑤 = 𝑐 → (♯‘(1st ‘𝑤)) = (♯‘(1st ‘𝑐))) | |
| 21 | 20 | breq2d 5155 | . . . . 5 ⊢ (𝑤 = 𝑐 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ (♯‘(1st ‘𝑐)))) | 
| 22 | 21 | cbvrabv 3447 | . . . 4 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} | 
| 23 | 19, 22 | eqtri 2765 | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} | 
| 24 | 18, 23 | elrab2 3695 | . 2 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶 ↔ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘𝑓))) | 
| 25 | 1, 13, 24 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 〈cop 4632 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 0cc0 11155 1c1 11156 ≤ cle 11296 − cmin 11492 ♯chash 14369 Word cword 14552 ++ cconcat 14608 〈“cs1 14633 Vtxcvtx 29013 Walkscwlks 29614 ClWalkscclwlks 29790 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-wlks 29617 df-clwlks 29791 | 
| This theorem is referenced by: clwlkclwwlkfo 30028 | 
| Copyright terms: Public domain | W3C validator |