Step | Hyp | Ref
| Expression |
1 | | simp3 1136 |
. 2
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ) β§
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) β
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) |
2 | | wrdlenccats1lenm1 14578 |
. . . . . . 7
β’ (π β Word (VtxβπΊ) β ((β―β(π ++ β¨β(πβ0)ββ©)) β
1) = (β―βπ)) |
3 | 2 | eqcomd 2736 |
. . . . . 6
β’ (π β Word (VtxβπΊ) β (β―βπ) = ((β―β(π ++ β¨β(πβ0)ββ©)) β
1)) |
4 | 3 | breq2d 5161 |
. . . . 5
β’ (π β Word (VtxβπΊ) β (1 β€
(β―βπ) β 1
β€ ((β―β(π ++
β¨β(πβ0)ββ©)) β
1))) |
5 | 4 | biimpa 475 |
. . . 4
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ)) β 1
β€ ((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
6 | 5 | 3adant3 1130 |
. . 3
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ) β§
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) β 1
β€ ((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
7 | | df-br 5150 |
. . . . 5
β’ (π(ClWalksβπΊ)(π ++ β¨β(πβ0)ββ©) β β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) |
8 | | clwlkiswlk 29296 |
. . . . . 6
β’ (π(ClWalksβπΊ)(π ++ β¨β(πβ0)ββ©) β π(WalksβπΊ)(π ++ β¨β(πβ0)ββ©)) |
9 | | wlklenvm1 29144 |
. . . . . 6
β’ (π(WalksβπΊ)(π ++ β¨β(πβ0)ββ©) β
(β―βπ) =
((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
10 | 8, 9 | syl 17 |
. . . . 5
β’ (π(ClWalksβπΊ)(π ++ β¨β(πβ0)ββ©) β
(β―βπ) =
((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
11 | 7, 10 | sylbir 234 |
. . . 4
β’
(β¨π, (π ++ β¨β(πβ0)ββ©)β©
β (ClWalksβπΊ)
β (β―βπ) =
((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
12 | 11 | 3ad2ant3 1133 |
. . 3
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ) β§
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) β
(β―βπ) =
((β―β(π ++
β¨β(πβ0)ββ©)) β
1)) |
13 | 6, 12 | breqtrrd 5177 |
. 2
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ) β§
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) β 1
β€ (β―βπ)) |
14 | | vex 3476 |
. . . . . 6
β’ π β V |
15 | | ovex 7446 |
. . . . . 6
β’ (π ++ β¨β(πβ0)ββ©) β
V |
16 | 14, 15 | op1std 7989 |
. . . . 5
β’ (π = β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(1st βπ) =
π) |
17 | 16 | fveq2d 6896 |
. . . 4
β’ (π = β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(β―β(1st βπ)) = (β―βπ)) |
18 | 17 | breq2d 5161 |
. . 3
β’ (π = β¨π, (π ++ β¨β(πβ0)ββ©)β© β (1 β€
(β―β(1st βπ)) β 1 β€ (β―βπ))) |
19 | | clwlkclwwlkf.c |
. . . 4
β’ πΆ = {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} |
20 | | 2fveq3 6897 |
. . . . . 6
β’ (π€ = π β (β―β(1st
βπ€)) =
(β―β(1st βπ))) |
21 | 20 | breq2d 5161 |
. . . . 5
β’ (π€ = π β (1 β€
(β―β(1st βπ€)) β 1 β€
(β―β(1st βπ)))) |
22 | 21 | cbvrabv 3440 |
. . . 4
β’ {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} = {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ))} |
23 | 19, 22 | eqtri 2758 |
. . 3
β’ πΆ = {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ))} |
24 | 18, 23 | elrab2 3687 |
. 2
β’
(β¨π, (π ++ β¨β(πβ0)ββ©)β©
β πΆ β
(β¨π, (π ++ β¨β(πβ0)ββ©)β©
β (ClWalksβπΊ)
β§ 1 β€ (β―βπ))) |
25 | 1, 13, 24 | sylanbrc 581 |
1
β’ ((π β Word (VtxβπΊ) β§ 1 β€
(β―βπ) β§
β¨π, (π ++ β¨β(πβ0)ββ©)β© β
(ClWalksβπΊ)) β
β¨π, (π ++ β¨β(πβ0)ββ©)β© β πΆ) |