| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlkfolem | Structured version Visualization version GIF version | ||
| Description: Lemma for clwlkclwwlkfo 29945. (Contributed by AV, 25-May-2022.) |
| Ref | Expression |
|---|---|
| clwlkclwwlkf.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} |
| Ref | Expression |
|---|---|
| clwlkclwwlkfolem | ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 2 | wrdlenccats1lenm1 14594 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1) = (♯‘𝑊)) | |
| 3 | 2 | eqcomd 2736 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 4 | 3 | breq2d 5122 | . . . . 5 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (1 ≤ (♯‘𝑊) ↔ 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1))) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 7 | df-br 5111 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) ↔ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 8 | clwlkiswlk 29711 | . . . . . 6 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → 𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉)) | |
| 9 | wlklenvm1 29557 | . . . . . 6 ⊢ (𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 11 | 7, 10 | sylbir 235 | . . . 4 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 13 | 6, 12 | breqtrrd 5138 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ (♯‘𝑓)) |
| 14 | vex 3454 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 15 | ovex 7423 | . . . . . 6 ⊢ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ V | |
| 16 | 14, 15 | op1std 7981 | . . . . 5 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1st ‘𝑐) = 𝑓) |
| 17 | 16 | fveq2d 6865 | . . . 4 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (♯‘(1st ‘𝑐)) = (♯‘𝑓)) |
| 18 | 17 | breq2d 5122 | . . 3 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1 ≤ (♯‘(1st ‘𝑐)) ↔ 1 ≤ (♯‘𝑓))) |
| 19 | clwlkclwwlkf.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} | |
| 20 | 2fveq3 6866 | . . . . . 6 ⊢ (𝑤 = 𝑐 → (♯‘(1st ‘𝑤)) = (♯‘(1st ‘𝑐))) | |
| 21 | 20 | breq2d 5122 | . . . . 5 ⊢ (𝑤 = 𝑐 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ (♯‘(1st ‘𝑐)))) |
| 22 | 21 | cbvrabv 3419 | . . . 4 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} |
| 23 | 19, 22 | eqtri 2753 | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} |
| 24 | 18, 23 | elrab2 3665 | . 2 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶 ↔ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘𝑓))) |
| 25 | 1, 13, 24 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 0cc0 11075 1c1 11076 ≤ cle 11216 − cmin 11412 ♯chash 14302 Word cword 14485 ++ cconcat 14542 〈“cs1 14567 Vtxcvtx 28930 Walkscwlks 29531 ClWalkscclwlks 29707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-wlks 29534 df-clwlks 29708 |
| This theorem is referenced by: clwlkclwwlkfo 29945 |
| Copyright terms: Public domain | W3C validator |