| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlkfolem | Structured version Visualization version GIF version | ||
| Description: Lemma for clwlkclwwlkfo 29984. (Contributed by AV, 25-May-2022.) |
| Ref | Expression |
|---|---|
| clwlkclwwlkf.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} |
| Ref | Expression |
|---|---|
| clwlkclwwlkfolem | ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 2 | wrdlenccats1lenm1 14527 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1) = (♯‘𝑊)) | |
| 3 | 2 | eqcomd 2737 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 4 | 3 | breq2d 5103 | . . . . 5 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (1 ≤ (♯‘𝑊) ↔ 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1))) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 7 | df-br 5092 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) ↔ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) | |
| 8 | clwlkiswlk 29750 | . . . . . 6 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → 𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉)) | |
| 9 | wlklenvm1 29598 | . . . . . 6 ⊢ (𝑓(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑓(ClWalks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 11 | 7, 10 | sylbir 235 | . . . 4 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → (♯‘𝑓) = ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) − 1)) |
| 13 | 6, 12 | breqtrrd 5119 | . 2 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 1 ≤ (♯‘𝑓)) |
| 14 | vex 3440 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 15 | ovex 7379 | . . . . . 6 ⊢ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ V | |
| 16 | 14, 15 | op1std 7931 | . . . . 5 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1st ‘𝑐) = 𝑓) |
| 17 | 16 | fveq2d 6826 | . . . 4 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (♯‘(1st ‘𝑐)) = (♯‘𝑓)) |
| 18 | 17 | breq2d 5103 | . . 3 ⊢ (𝑐 = 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 → (1 ≤ (♯‘(1st ‘𝑐)) ↔ 1 ≤ (♯‘𝑓))) |
| 19 | clwlkclwwlkf.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} | |
| 20 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑤 = 𝑐 → (♯‘(1st ‘𝑤)) = (♯‘(1st ‘𝑐))) | |
| 21 | 20 | breq2d 5103 | . . . . 5 ⊢ (𝑤 = 𝑐 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ (♯‘(1st ‘𝑐)))) |
| 22 | 21 | cbvrabv 3405 | . . . 4 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} |
| 23 | 19, 22 | eqtri 2754 | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑐))} |
| 24 | 18, 23 | elrab2 3650 | . 2 ⊢ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶 ↔ (〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘𝑓))) |
| 25 | 1, 13, 24 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (ClWalks‘𝐺)) → 〈𝑓, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 0cc0 11003 1c1 11004 ≤ cle 11144 − cmin 11341 ♯chash 14234 Word cword 14417 ++ cconcat 14474 〈“cs1 14500 Vtxcvtx 28972 Walkscwlks 29573 ClWalkscclwlks 29746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-concat 14475 df-s1 14501 df-wlks 29576 df-clwlks 29747 |
| This theorem is referenced by: clwlkclwwlkfo 29984 |
| Copyright terms: Public domain | W3C validator |