Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycf Structured version   Visualization version   GIF version

Theorem tocycf 33110
Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
tocycf.c 𝐶 = (toCyc‘𝐷)
tocycf.s 𝑆 = (SymGrp‘𝐷)
tocycf.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
tocycf (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Distinct variable group:   𝑤,𝐷
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)   𝑆(𝑤)   𝑉(𝑤)

Proof of Theorem tocycf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 tocycf.c . . 3 𝐶 = (toCyc‘𝐷)
21tocycval 33101 . 2 (𝐷𝑉𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢))))
3 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
43rneqd 5963 . . . . . . . . . 10 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅)
5 rn0 5950 . . . . . . . . . 10 ran ∅ = ∅
64, 5eqtrdi 2796 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅)
76difeq2d 4149 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅))
8 dif0 4400 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
97, 8eqtrdi 2796 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷)
109reseq2d 6009 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷))
113cnveqd 5900 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
12 cnv0 6172 . . . . . . . . 9 ∅ = ∅
1311, 12eqtrdi 2796 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
1413coeq2d 5887 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ((𝑢 cyclShift 1) ∘ ∅))
15 co02 6291 . . . . . . 7 ((𝑢 cyclShift 1) ∘ ∅) = ∅
1614, 15eqtrdi 2796 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ∅)
1710, 16uneq12d 4192 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = (( I ↾ 𝐷) ∪ ∅))
18 un0 4417 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
1917, 18eqtrdi 2796 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = ( I ↾ 𝐷))
20 tocycf.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2120idresperm 19427 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆))
22 tocycf.b . . . . . 6 𝐵 = (Base‘𝑆)
2321, 22eleqtrrdi 2855 . . . . 5 (𝐷𝑉 → ( I ↾ 𝐷) ∈ 𝐵)
2423ad2antrr 725 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵)
2519, 24eqeltrd 2844 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
26 difexg 5347 . . . . . . . . 9 (𝐷𝑉 → (𝐷 ∖ ran 𝑢) ∈ V)
2726resiexd 7253 . . . . . . . 8 (𝐷𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V)
28 ovex 7481 . . . . . . . . 9 (𝑢 cyclShift 1) ∈ V
29 vex 3492 . . . . . . . . . 10 𝑢 ∈ V
3029cnvex 7965 . . . . . . . . 9 𝑢 ∈ V
3128, 30coex 7970 . . . . . . . 8 ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V
32 unexg 7778 . . . . . . . 8 ((( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3327, 31, 32sylancl 585 . . . . . . 7 (𝐷𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3433adantr 480 . . . . . 6 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
352, 34fvmpt2d 7042 . . . . 5 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
3635adantr 480 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
37 simpll 766 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷𝑉)
38 simplr 768 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
39 id 22 . . . . . . . . . 10 (𝑤 = 𝑢𝑤 = 𝑢)
40 dmeq 5928 . . . . . . . . . 10 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
41 eqidd 2741 . . . . . . . . . 10 (𝑤 = 𝑢𝐷 = 𝐷)
4239, 40, 41f1eq123d 6854 . . . . . . . . 9 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
4342elrab 3708 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4438, 43sylib 218 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4544simpld 494 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷)
4644simprd 495 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢1-1𝐷)
471, 37, 45, 46, 20cycpmcl 33109 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ (Base‘𝑆))
4847, 22eleqtrrdi 2855 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ 𝐵)
4936, 48eqeltrrd 2845 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
5025, 49pm2.61dane 3035 . 2 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
512, 50fmpt3d 7150 1 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  c0 4352   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  1c1 11185  Word cword 14562   cyclShift ccsh 14836  Basecbs 17258  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-tocyc 33100
This theorem is referenced by:  tocyc01  33111  cycpmco2f1  33117  cycpmco2rn  33118  cycpmco2lem1  33119  cycpmco2lem2  33120  cycpmco2lem3  33121  cycpmco2lem4  33122  cycpmco2lem5  33123  cycpmco2lem6  33124  cycpmco2lem7  33125  cycpmco2  33126  cycpm3cl2  33129  cycpmconjv  33135  tocyccntz  33137  cyc3evpm  33143  cycpmgcl  33146  cycpmconjslem2  33148  cyc3conja  33150
  Copyright terms: Public domain W3C validator