Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycf Structured version   Visualization version   GIF version

Theorem tocycf 33086
Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
tocycf.c 𝐶 = (toCyc‘𝐷)
tocycf.s 𝑆 = (SymGrp‘𝐷)
tocycf.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
tocycf (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Distinct variable group:   𝑤,𝐷
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)   𝑆(𝑤)   𝑉(𝑤)

Proof of Theorem tocycf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 tocycf.c . . 3 𝐶 = (toCyc‘𝐷)
21tocycval 33077 . 2 (𝐷𝑉𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢))))
3 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
43rneqd 5877 . . . . . . . . . 10 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅)
5 rn0 5865 . . . . . . . . . 10 ran ∅ = ∅
64, 5eqtrdi 2782 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅)
76difeq2d 4073 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅))
8 dif0 4325 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
97, 8eqtrdi 2782 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷)
109reseq2d 5927 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷))
113cnveqd 5814 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
12 cnv0 6086 . . . . . . . . 9 ∅ = ∅
1311, 12eqtrdi 2782 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
1413coeq2d 5801 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ((𝑢 cyclShift 1) ∘ ∅))
15 co02 6208 . . . . . . 7 ((𝑢 cyclShift 1) ∘ ∅) = ∅
1614, 15eqtrdi 2782 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ∅)
1710, 16uneq12d 4116 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = (( I ↾ 𝐷) ∪ ∅))
18 un0 4341 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
1917, 18eqtrdi 2782 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = ( I ↾ 𝐷))
20 tocycf.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2120idresperm 19298 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆))
22 tocycf.b . . . . . 6 𝐵 = (Base‘𝑆)
2321, 22eleqtrrdi 2842 . . . . 5 (𝐷𝑉 → ( I ↾ 𝐷) ∈ 𝐵)
2423ad2antrr 726 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵)
2519, 24eqeltrd 2831 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
26 difexg 5265 . . . . . . . . 9 (𝐷𝑉 → (𝐷 ∖ ran 𝑢) ∈ V)
2726resiexd 7150 . . . . . . . 8 (𝐷𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V)
28 ovex 7379 . . . . . . . . 9 (𝑢 cyclShift 1) ∈ V
29 vex 3440 . . . . . . . . . 10 𝑢 ∈ V
3029cnvex 7855 . . . . . . . . 9 𝑢 ∈ V
3128, 30coex 7860 . . . . . . . 8 ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V
32 unexg 7676 . . . . . . . 8 ((( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3327, 31, 32sylancl 586 . . . . . . 7 (𝐷𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3433adantr 480 . . . . . 6 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
352, 34fvmpt2d 6942 . . . . 5 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
3635adantr 480 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
37 simpll 766 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷𝑉)
38 simplr 768 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
39 id 22 . . . . . . . . . 10 (𝑤 = 𝑢𝑤 = 𝑢)
40 dmeq 5842 . . . . . . . . . 10 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
41 eqidd 2732 . . . . . . . . . 10 (𝑤 = 𝑢𝐷 = 𝐷)
4239, 40, 41f1eq123d 6755 . . . . . . . . 9 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
4342elrab 3642 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4438, 43sylib 218 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4544simpld 494 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷)
4644simprd 495 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢1-1𝐷)
471, 37, 45, 46, 20cycpmcl 33085 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ (Base‘𝑆))
4847, 22eleqtrrdi 2842 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ 𝐵)
4936, 48eqeltrrd 2832 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
5025, 49pm2.61dane 3015 . 2 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
512, 50fmpt3d 7049 1 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  c0 4280   I cid 5508  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  1c1 11007  Word cword 14420   cyclShift ccsh 14695  Basecbs 17120  SymGrpcsymg 19281  toCycctocyc 33075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14549  df-pfx 14579  df-csh 14696  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18777  df-symg 19282  df-tocyc 33076
This theorem is referenced by:  tocyc01  33087  cycpmco2f1  33093  cycpmco2rn  33094  cycpmco2lem1  33095  cycpmco2lem2  33096  cycpmco2lem3  33097  cycpmco2lem4  33098  cycpmco2lem5  33099  cycpmco2lem6  33100  cycpmco2lem7  33101  cycpmco2  33102  cycpm3cl2  33105  cycpmconjv  33111  tocyccntz  33113  cyc3evpm  33119  cycpmgcl  33122  cycpmconjslem2  33124  cyc3conja  33126
  Copyright terms: Public domain W3C validator