| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tocycf.c | . . 3
⊢ 𝐶 = (toCyc‘𝐷) | 
| 2 | 1 | tocycval 33129 | . 2
⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)))) | 
| 3 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅) | 
| 4 | 3 | rneqd 5948 | . . . . . . . . . 10
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅) | 
| 5 |  | rn0 5935 | . . . . . . . . . 10
⊢ ran
∅ = ∅ | 
| 6 | 4, 5 | eqtrdi 2792 | . . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅) | 
| 7 | 6 | difeq2d 4125 | . . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅)) | 
| 8 |  | dif0 4377 | . . . . . . . 8
⊢ (𝐷 ∖ ∅) = 𝐷 | 
| 9 | 7, 8 | eqtrdi 2792 | . . . . . . 7
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷) | 
| 10 | 9 | reseq2d 5996 | . . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷)) | 
| 11 | 3 | cnveqd 5885 | . . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ◡𝑢 = ◡∅) | 
| 12 |  | cnv0 6159 | . . . . . . . . 9
⊢ ◡∅ = ∅ | 
| 13 | 11, 12 | eqtrdi 2792 | . . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ◡𝑢 = ∅) | 
| 14 | 13 | coeq2d 5872 | . . . . . . 7
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ ◡𝑢) = ((𝑢 cyclShift 1) ∘
∅)) | 
| 15 |  | co02 6279 | . . . . . . 7
⊢ ((𝑢 cyclShift 1) ∘ ∅) =
∅ | 
| 16 | 14, 15 | eqtrdi 2792 | . . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ ◡𝑢) = ∅) | 
| 17 | 10, 16 | uneq12d 4168 | . . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) = (( I ↾ 𝐷) ∪ ∅)) | 
| 18 |  | un0 4393 | . . . . 5
⊢ (( I
↾ 𝐷) ∪ ∅) =
( I ↾ 𝐷) | 
| 19 | 17, 18 | eqtrdi 2792 | . . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) = ( I ↾ 𝐷)) | 
| 20 |  | tocycf.s | . . . . . . 7
⊢ 𝑆 = (SymGrp‘𝐷) | 
| 21 | 20 | idresperm 19404 | . . . . . 6
⊢ (𝐷 ∈ 𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆)) | 
| 22 |  | tocycf.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑆) | 
| 23 | 21, 22 | eleqtrrdi 2851 | . . . . 5
⊢ (𝐷 ∈ 𝑉 → ( I ↾ 𝐷) ∈ 𝐵) | 
| 24 | 23 | ad2antrr 726 | . . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵) | 
| 25 | 19, 24 | eqeltrd 2840 | . . 3
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ 𝐵) | 
| 26 |  | difexg 5328 | . . . . . . . . 9
⊢ (𝐷 ∈ 𝑉 → (𝐷 ∖ ran 𝑢) ∈ V) | 
| 27 | 26 | resiexd 7237 | . . . . . . . 8
⊢ (𝐷 ∈ 𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V) | 
| 28 |  | ovex 7465 | . . . . . . . . 9
⊢ (𝑢 cyclShift 1) ∈
V | 
| 29 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑢 ∈ V | 
| 30 | 29 | cnvex 7948 | . . . . . . . . 9
⊢ ◡𝑢 ∈ V | 
| 31 | 28, 30 | coex 7953 | . . . . . . . 8
⊢ ((𝑢 cyclShift 1) ∘ ◡𝑢) ∈ V | 
| 32 |  | unexg 7764 | . . . . . . . 8
⊢ ((( I
↾ (𝐷 ∖ ran
𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ ◡𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ V) | 
| 33 | 27, 31, 32 | sylancl 586 | . . . . . . 7
⊢ (𝐷 ∈ 𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ V) | 
| 34 | 33 | adantr 480 | . . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ V) | 
| 35 | 2, 34 | fvmpt2d 7028 | . . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → (𝐶‘𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢))) | 
| 36 | 35 | adantr 480 | . . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶‘𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢))) | 
| 37 |  | simpll 766 | . . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷 ∈ 𝑉) | 
| 38 |  | simplr 768 | . . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | 
| 39 |  | id 22 | . . . . . . . . . 10
⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | 
| 40 |  | dmeq 5913 | . . . . . . . . . 10
⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | 
| 41 |  | eqidd 2737 | . . . . . . . . . 10
⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | 
| 42 | 39, 40, 41 | f1eq123d 6839 | . . . . . . . . 9
⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) | 
| 43 | 42 | elrab 3691 | . . . . . . . 8
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) | 
| 44 | 38, 43 | sylib 218 | . . . . . . 7
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) | 
| 45 | 44 | simpld 494 | . . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷) | 
| 46 | 44 | simprd 495 | . . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢–1-1→𝐷) | 
| 47 | 1, 37, 45, 46, 20 | cycpmcl 33137 | . . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶‘𝑢) ∈ (Base‘𝑆)) | 
| 48 | 47, 22 | eleqtrrdi 2851 | . . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶‘𝑢) ∈ 𝐵) | 
| 49 | 36, 48 | eqeltrrd 2841 | . . 3
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ 𝐵) | 
| 50 | 25, 49 | pm2.61dane 3028 | . 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ ◡𝑢)) ∈ 𝐵) | 
| 51 | 2, 50 | fmpt3d 7135 | 1
⊢ (𝐷 ∈ 𝑉 → 𝐶:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |