Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycf Structured version   Visualization version   GIF version

Theorem tocycf 33074
Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
tocycf.c 𝐶 = (toCyc‘𝐷)
tocycf.s 𝑆 = (SymGrp‘𝐷)
tocycf.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
tocycf (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Distinct variable group:   𝑤,𝐷
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)   𝑆(𝑤)   𝑉(𝑤)

Proof of Theorem tocycf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 tocycf.c . . 3 𝐶 = (toCyc‘𝐷)
21tocycval 33065 . 2 (𝐷𝑉𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢))))
3 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
43rneqd 5902 . . . . . . . . . 10 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅)
5 rn0 5889 . . . . . . . . . 10 ran ∅ = ∅
64, 5eqtrdi 2780 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅)
76difeq2d 4089 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅))
8 dif0 4341 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
97, 8eqtrdi 2780 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷)
109reseq2d 5950 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷))
113cnveqd 5839 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
12 cnv0 6113 . . . . . . . . 9 ∅ = ∅
1311, 12eqtrdi 2780 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
1413coeq2d 5826 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ((𝑢 cyclShift 1) ∘ ∅))
15 co02 6233 . . . . . . 7 ((𝑢 cyclShift 1) ∘ ∅) = ∅
1614, 15eqtrdi 2780 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ∅)
1710, 16uneq12d 4132 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = (( I ↾ 𝐷) ∪ ∅))
18 un0 4357 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
1917, 18eqtrdi 2780 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = ( I ↾ 𝐷))
20 tocycf.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2120idresperm 19316 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆))
22 tocycf.b . . . . . 6 𝐵 = (Base‘𝑆)
2321, 22eleqtrrdi 2839 . . . . 5 (𝐷𝑉 → ( I ↾ 𝐷) ∈ 𝐵)
2423ad2antrr 726 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵)
2519, 24eqeltrd 2828 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
26 difexg 5284 . . . . . . . . 9 (𝐷𝑉 → (𝐷 ∖ ran 𝑢) ∈ V)
2726resiexd 7190 . . . . . . . 8 (𝐷𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V)
28 ovex 7420 . . . . . . . . 9 (𝑢 cyclShift 1) ∈ V
29 vex 3451 . . . . . . . . . 10 𝑢 ∈ V
3029cnvex 7901 . . . . . . . . 9 𝑢 ∈ V
3128, 30coex 7906 . . . . . . . 8 ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V
32 unexg 7719 . . . . . . . 8 ((( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3327, 31, 32sylancl 586 . . . . . . 7 (𝐷𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3433adantr 480 . . . . . 6 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
352, 34fvmpt2d 6981 . . . . 5 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
3635adantr 480 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
37 simpll 766 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷𝑉)
38 simplr 768 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
39 id 22 . . . . . . . . . 10 (𝑤 = 𝑢𝑤 = 𝑢)
40 dmeq 5867 . . . . . . . . . 10 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
41 eqidd 2730 . . . . . . . . . 10 (𝑤 = 𝑢𝐷 = 𝐷)
4239, 40, 41f1eq123d 6792 . . . . . . . . 9 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
4342elrab 3659 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4438, 43sylib 218 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4544simpld 494 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷)
4644simprd 495 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢1-1𝐷)
471, 37, 45, 46, 20cycpmcl 33073 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ (Base‘𝑆))
4847, 22eleqtrrdi 2839 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ 𝐵)
4936, 48eqeltrrd 2829 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
5025, 49pm2.61dane 3012 . 2 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
512, 50fmpt3d 7088 1 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  c0 4296   I cid 5532  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  1c1 11069  Word cword 14478   cyclShift ccsh 14753  Basecbs 17179  SymGrpcsymg 19299  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300  df-tocyc 33064
This theorem is referenced by:  tocyc01  33075  cycpmco2f1  33081  cycpmco2rn  33082  cycpmco2lem1  33083  cycpmco2lem2  33084  cycpmco2lem3  33085  cycpmco2lem4  33086  cycpmco2lem5  33087  cycpmco2lem6  33088  cycpmco2lem7  33089  cycpmco2  33090  cycpm3cl2  33093  cycpmconjv  33099  tocyccntz  33101  cyc3evpm  33107  cycpmgcl  33110  cycpmconjslem2  33112  cyc3conja  33114
  Copyright terms: Public domain W3C validator