Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycf Structured version   Visualization version   GIF version

Theorem tocycf 31384
Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
tocycf.c 𝐶 = (toCyc‘𝐷)
tocycf.s 𝑆 = (SymGrp‘𝐷)
tocycf.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
tocycf (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Distinct variable group:   𝑤,𝐷
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)   𝑆(𝑤)   𝑉(𝑤)

Proof of Theorem tocycf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 tocycf.c . . 3 𝐶 = (toCyc‘𝐷)
21tocycval 31375 . 2 (𝐷𝑉𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢))))
3 simpr 485 . . . . . . . . . . 11 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
43rneqd 5847 . . . . . . . . . 10 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅)
5 rn0 5835 . . . . . . . . . 10 ran ∅ = ∅
64, 5eqtrdi 2794 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅)
76difeq2d 4057 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅))
8 dif0 4306 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
97, 8eqtrdi 2794 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷)
109reseq2d 5891 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷))
113cnveqd 5784 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
12 cnv0 6044 . . . . . . . . 9 ∅ = ∅
1311, 12eqtrdi 2794 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
1413coeq2d 5771 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ((𝑢 cyclShift 1) ∘ ∅))
15 co02 6164 . . . . . . 7 ((𝑢 cyclShift 1) ∘ ∅) = ∅
1614, 15eqtrdi 2794 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ∅)
1710, 16uneq12d 4098 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = (( I ↾ 𝐷) ∪ ∅))
18 un0 4324 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
1917, 18eqtrdi 2794 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = ( I ↾ 𝐷))
20 tocycf.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2120idresperm 18993 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆))
22 tocycf.b . . . . . 6 𝐵 = (Base‘𝑆)
2321, 22eleqtrrdi 2850 . . . . 5 (𝐷𝑉 → ( I ↾ 𝐷) ∈ 𝐵)
2423ad2antrr 723 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵)
2519, 24eqeltrd 2839 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
26 difexg 5251 . . . . . . . . 9 (𝐷𝑉 → (𝐷 ∖ ran 𝑢) ∈ V)
2726resiexd 7092 . . . . . . . 8 (𝐷𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V)
28 ovex 7308 . . . . . . . . 9 (𝑢 cyclShift 1) ∈ V
29 vex 3436 . . . . . . . . . 10 𝑢 ∈ V
3029cnvex 7772 . . . . . . . . 9 𝑢 ∈ V
3128, 30coex 7777 . . . . . . . 8 ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V
32 unexg 7599 . . . . . . . 8 ((( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3327, 31, 32sylancl 586 . . . . . . 7 (𝐷𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3433adantr 481 . . . . . 6 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
352, 34fvmpt2d 6888 . . . . 5 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
3635adantr 481 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
37 simpll 764 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷𝑉)
38 simplr 766 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
39 id 22 . . . . . . . . . 10 (𝑤 = 𝑢𝑤 = 𝑢)
40 dmeq 5812 . . . . . . . . . 10 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
41 eqidd 2739 . . . . . . . . . 10 (𝑤 = 𝑢𝐷 = 𝐷)
4239, 40, 41f1eq123d 6708 . . . . . . . . 9 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
4342elrab 3624 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4438, 43sylib 217 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4544simpld 495 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷)
4644simprd 496 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢1-1𝐷)
471, 37, 45, 46, 20cycpmcl 31383 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ (Base‘𝑆))
4847, 22eleqtrrdi 2850 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ 𝐵)
4936, 48eqeltrrd 2840 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
5025, 49pm2.61dane 3032 . 2 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
512, 50fmpt3d 6990 1 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  c0 4256   I cid 5488  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  1c1 10872  Word cword 14217   cyclShift ccsh 14501  Basecbs 16912  SymGrpcsymg 18974  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975  df-tocyc 31374
This theorem is referenced by:  tocyc01  31385  cycpmco2f1  31391  cycpmco2rn  31392  cycpmco2lem1  31393  cycpmco2lem2  31394  cycpmco2lem3  31395  cycpmco2lem4  31396  cycpmco2lem5  31397  cycpmco2lem6  31398  cycpmco2lem7  31399  cycpmco2  31400  cycpm3cl2  31403  cycpmconjv  31409  tocyccntz  31411  cyc3evpm  31417  cycpmgcl  31420  cycpmconjslem2  31422  cyc3conja  31424
  Copyright terms: Public domain W3C validator