Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycf Structured version   Visualization version   GIF version

Theorem tocycf 33138
Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
tocycf.c 𝐶 = (toCyc‘𝐷)
tocycf.s 𝑆 = (SymGrp‘𝐷)
tocycf.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
tocycf (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Distinct variable group:   𝑤,𝐷
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)   𝑆(𝑤)   𝑉(𝑤)

Proof of Theorem tocycf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 tocycf.c . . 3 𝐶 = (toCyc‘𝐷)
21tocycval 33129 . 2 (𝐷𝑉𝐶 = (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢))))
3 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
43rneqd 5948 . . . . . . . . . 10 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ran ∅)
5 rn0 5935 . . . . . . . . . 10 ran ∅ = ∅
64, 5eqtrdi 2792 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ran 𝑢 = ∅)
76difeq2d 4125 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = (𝐷 ∖ ∅))
8 dif0 4377 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
97, 8eqtrdi 2792 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (𝐷 ∖ ran 𝑢) = 𝐷)
109reseq2d 5996 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ 𝐷))
113cnveqd 5885 . . . . . . . . 9 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
12 cnv0 6159 . . . . . . . . 9 ∅ = ∅
1311, 12eqtrdi 2792 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → 𝑢 = ∅)
1413coeq2d 5872 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ((𝑢 cyclShift 1) ∘ ∅))
15 co02 6279 . . . . . . 7 ((𝑢 cyclShift 1) ∘ ∅) = ∅
1614, 15eqtrdi 2792 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ((𝑢 cyclShift 1) ∘ 𝑢) = ∅)
1710, 16uneq12d 4168 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = (( I ↾ 𝐷) ∪ ∅))
18 un0 4393 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
1917, 18eqtrdi 2792 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) = ( I ↾ 𝐷))
20 tocycf.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2120idresperm 19404 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) ∈ (Base‘𝑆))
22 tocycf.b . . . . . 6 𝐵 = (Base‘𝑆)
2321, 22eleqtrrdi 2851 . . . . 5 (𝐷𝑉 → ( I ↾ 𝐷) ∈ 𝐵)
2423ad2antrr 726 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → ( I ↾ 𝐷) ∈ 𝐵)
2519, 24eqeltrd 2840 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 = ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
26 difexg 5328 . . . . . . . . 9 (𝐷𝑉 → (𝐷 ∖ ran 𝑢) ∈ V)
2726resiexd 7237 . . . . . . . 8 (𝐷𝑉 → ( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V)
28 ovex 7465 . . . . . . . . 9 (𝑢 cyclShift 1) ∈ V
29 vex 3483 . . . . . . . . . 10 𝑢 ∈ V
3029cnvex 7948 . . . . . . . . 9 𝑢 ∈ V
3128, 30coex 7953 . . . . . . . 8 ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V
32 unexg 7764 . . . . . . . 8 ((( I ↾ (𝐷 ∖ ran 𝑢)) ∈ V ∧ ((𝑢 cyclShift 1) ∘ 𝑢) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3327, 31, 32sylancl 586 . . . . . . 7 (𝐷𝑉 → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
3433adantr 480 . . . . . 6 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ V)
352, 34fvmpt2d 7028 . . . . 5 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
3635adantr 480 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) = (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)))
37 simpll 766 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝐷𝑉)
38 simplr 768 . . . . . . . 8 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
39 id 22 . . . . . . . . . 10 (𝑤 = 𝑢𝑤 = 𝑢)
40 dmeq 5913 . . . . . . . . . 10 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
41 eqidd 2737 . . . . . . . . . 10 (𝑤 = 𝑢𝐷 = 𝐷)
4239, 40, 41f1eq123d 6839 . . . . . . . . 9 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
4342elrab 3691 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4438, 43sylib 218 . . . . . . 7 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
4544simpld 494 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢 ∈ Word 𝐷)
4644simprd 495 . . . . . 6 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → 𝑢:dom 𝑢1-1𝐷)
471, 37, 45, 46, 20cycpmcl 33137 . . . . 5 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ (Base‘𝑆))
4847, 22eleqtrrdi 2851 . . . 4 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (𝐶𝑢) ∈ 𝐵)
4936, 48eqeltrrd 2841 . . 3 (((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) ∧ 𝑢 ≠ ∅) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
5025, 49pm2.61dane 3028 . 2 ((𝐷𝑉𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → (( I ↾ (𝐷 ∖ ran 𝑢)) ∪ ((𝑢 cyclShift 1) ∘ 𝑢)) ∈ 𝐵)
512, 50fmpt3d 7135 1 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  {crab 3435  Vcvv 3479  cdif 3947  cun 3948  c0 4332   I cid 5576  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  ccom 5688  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  1c1 11157  Word cword 14553   cyclShift ccsh 14827  Basecbs 17248  SymGrpcsymg 19387  toCycctocyc 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-substr 14680  df-pfx 14710  df-csh 14828  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-efmnd 18883  df-symg 19388  df-tocyc 33128
This theorem is referenced by:  tocyc01  33139  cycpmco2f1  33145  cycpmco2rn  33146  cycpmco2lem1  33147  cycpmco2lem2  33148  cycpmco2lem3  33149  cycpmco2lem4  33150  cycpmco2lem5  33151  cycpmco2lem6  33152  cycpmco2lem7  33153  cycpmco2  33154  cycpm3cl2  33157  cycpmconjv  33163  tocyccntz  33165  cyc3evpm  33171  cycpmgcl  33174  cycpmconjslem2  33176  cyc3conja  33178
  Copyright terms: Public domain W3C validator