MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmco Structured version   Visualization version   GIF version

Theorem dmco 6147
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 5793 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 5783 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 5835 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 6146 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 5793 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 5956 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2769 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2770 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  fncofn  6532  fco3OLD  6618  curry1  7915  curry2  7918  smobeth  10273  hashkf  13974  imasless  17168  ofco2  21508  fcoinver  30847  xppreima  30884  smatrcl  31648
  Copyright terms: Public domain W3C validator