MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmco Structured version   Visualization version   GIF version

Theorem dmco 6227
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 5859 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 5849 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 5901 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 6226 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 5859 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 6029 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2755 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2756 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  fncofn  6635  curry1  8083  curry2  8086  smobeth  10539  hashkf  14297  imasless  17503  ofco2  22338  fcoinver  32533  xppreima  32569  smatrcl  33786
  Copyright terms: Public domain W3C validator