MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmco Structured version   Visualization version   GIF version

Theorem dmco 6248
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 5880 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 5870 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 5922 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 6247 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 5880 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 6050 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2762 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2763 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  fncofn  6660  curry1  8108  curry2  8111  smobeth  10605  hashkf  14355  imasless  17559  ofco2  22394  fcoinver  32590  xppreima  32628  smatrcl  33832
  Copyright terms: Public domain W3C validator