MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmco Structured version   Visualization version   GIF version

Theorem dmco 6215
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 5849 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 5839 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 5890 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 6214 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 5849 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 6018 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2755 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2756 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  fncofn  6617  curry1  8060  curry2  8063  smobeth  10515  hashkf  14273  imasless  17479  ofco2  22314  fcoinver  32506  xppreima  32542  smatrcl  33759
  Copyright terms: Public domain W3C validator