| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmco | Structured version Visualization version GIF version | ||
| Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| dmco | ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5888 | . 2 ⊢ dom (𝐴 ∘ 𝐵) = ran ◡(𝐴 ∘ 𝐵) | |
| 2 | cnvco 5878 | . . 3 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 3 | 2 | rneqi 5930 | . 2 ⊢ ran ◡(𝐴 ∘ 𝐵) = ran (◡𝐵 ∘ ◡𝐴) |
| 4 | rnco2 6255 | . . 3 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ ran ◡𝐴) | |
| 5 | dfdm4 5888 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | 5 | imaeq2i 6058 | . . 3 ⊢ (◡𝐵 “ dom 𝐴) = (◡𝐵 “ ran ◡𝐴) |
| 7 | 4, 6 | eqtr4i 2760 | . 2 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ dom 𝐴) |
| 8 | 1, 3, 7 | 3eqtri 2761 | 1 ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ◡ccnv 5666 dom cdm 5667 ran crn 5668 “ cima 5670 ∘ ccom 5671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
| This theorem is referenced by: fncofn 6666 curry1 8112 curry2 8115 smobeth 10609 hashkf 14354 imasless 17561 ofco2 22424 fcoinver 32564 xppreima 32602 smatrcl 33736 |
| Copyright terms: Public domain | W3C validator |