MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmco Structured version   Visualization version   GIF version

Theorem dmco 6158
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 5804 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 5794 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 5846 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 6157 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 5804 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 5967 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2769 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2770 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  fncofn  6548  fco3OLD  6634  curry1  7944  curry2  7947  smobeth  10342  hashkf  14046  imasless  17251  ofco2  21600  fcoinver  30946  xppreima  30983  smatrcl  31746
  Copyright terms: Public domain W3C validator