| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmco | Structured version Visualization version GIF version | ||
| Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| dmco | ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5835 | . 2 ⊢ dom (𝐴 ∘ 𝐵) = ran ◡(𝐴 ∘ 𝐵) | |
| 2 | cnvco 5825 | . . 3 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 3 | 2 | rneqi 5877 | . 2 ⊢ ran ◡(𝐴 ∘ 𝐵) = ran (◡𝐵 ∘ ◡𝐴) |
| 4 | rnco2 6201 | . . 3 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ ran ◡𝐴) | |
| 5 | dfdm4 5835 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | 5 | imaeq2i 6007 | . . 3 ⊢ (◡𝐵 “ dom 𝐴) = (◡𝐵 “ ran ◡𝐴) |
| 7 | 4, 6 | eqtr4i 2757 | . 2 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ dom 𝐴) |
| 8 | 1, 3, 7 | 3eqtri 2758 | 1 ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: fncofn 6598 curry1 8034 curry2 8037 smobeth 10477 hashkf 14239 imasless 17444 ofco2 22367 fcoinver 32582 xppreima 32625 smatrcl 33807 |
| Copyright terms: Public domain | W3C validator |