MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coshval Structured version   Visualization version   GIF version

Theorem coshval 15500
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
coshval (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))

Proof of Theorem coshval
StepHypRef Expression
1 ax-icn 10585 . . . 4 i ∈ ℂ
2 mulcl 10610 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 689 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 cosval 15468 . . 3 ((i · 𝐴) ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
53, 4syl 17 . 2 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
6 negcl 10875 . . . . 5 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7 efcl 15428 . . . . 5 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
9 efcl 15428 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
10 ixi 11258 . . . . . . . 8 (i · i) = -1
1110oveq1i 7145 . . . . . . 7 ((i · i) · 𝐴) = (-1 · 𝐴)
12 mulass 10614 . . . . . . . 8 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
131, 1, 12mp3an12 1448 . . . . . . 7 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
14 mulm1 11070 . . . . . . 7 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
1511, 13, 143eqtr3a 2857 . . . . . 6 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
1615fveq2d 6649 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
171, 1mulneg1i 11075 . . . . . . . . 9 (-i · i) = -(i · i)
1810negeqi 10868 . . . . . . . . 9 -(i · i) = --1
19 negneg1e1 11743 . . . . . . . . 9 --1 = 1
2017, 18, 193eqtri 2825 . . . . . . . 8 (-i · i) = 1
2120oveq1i 7145 . . . . . . 7 ((-i · i) · 𝐴) = (1 · 𝐴)
22 negicn 10876 . . . . . . . 8 -i ∈ ℂ
23 mulass 10614 . . . . . . . 8 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
2422, 1, 23mp3an12 1448 . . . . . . 7 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
25 mulid2 10629 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2621, 24, 253eqtr3a 2857 . . . . . 6 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2726fveq2d 6649 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
2816, 27oveq12d 7153 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) + (exp‘𝐴)))
298, 9, 28comraddd 10843 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘𝐴) + (exp‘-𝐴)))
3029oveq1d 7150 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
315, 30eqtrd 2833 1 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  -cneg 10860   / cdiv 11286  2c2 11680  expce 15407  cosccos 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-cos 15416
This theorem is referenced by:  rpcoshcl  15502  tanhlt1  15505  sinhpcosh  45266
  Copyright terms: Public domain W3C validator