MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coshval Structured version   Visualization version   GIF version

Theorem coshval 15500
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
coshval (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))

Proof of Theorem coshval
StepHypRef Expression
1 ax-icn 10588 . . . 4 i ∈ ℂ
2 mulcl 10613 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 cosval 15468 . . 3 ((i · 𝐴) ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
53, 4syl 17 . 2 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
6 negcl 10878 . . . . 5 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7 efcl 15428 . . . . 5 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
9 efcl 15428 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
10 ixi 11261 . . . . . . . 8 (i · i) = -1
1110oveq1i 7158 . . . . . . 7 ((i · i) · 𝐴) = (-1 · 𝐴)
12 mulass 10617 . . . . . . . 8 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
131, 1, 12mp3an12 1444 . . . . . . 7 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
14 mulm1 11073 . . . . . . 7 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
1511, 13, 143eqtr3a 2878 . . . . . 6 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
1615fveq2d 6667 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
171, 1mulneg1i 11078 . . . . . . . . 9 (-i · i) = -(i · i)
1810negeqi 10871 . . . . . . . . 9 -(i · i) = --1
19 negneg1e1 11747 . . . . . . . . 9 --1 = 1
2017, 18, 193eqtri 2846 . . . . . . . 8 (-i · i) = 1
2120oveq1i 7158 . . . . . . 7 ((-i · i) · 𝐴) = (1 · 𝐴)
22 negicn 10879 . . . . . . . 8 -i ∈ ℂ
23 mulass 10617 . . . . . . . 8 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
2422, 1, 23mp3an12 1444 . . . . . . 7 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
25 mulid2 10632 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2621, 24, 253eqtr3a 2878 . . . . . 6 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2726fveq2d 6667 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
2816, 27oveq12d 7166 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) + (exp‘𝐴)))
298, 9, 28comraddd 10846 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘𝐴) + (exp‘-𝐴)))
3029oveq1d 7163 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
315, 30eqtrd 2854 1 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  cfv 6348  (class class class)co 7148  cc 10527  1c1 10530  ici 10531   + caddc 10532   · cmul 10534  -cneg 10863   / cdiv 11289  2c2 11684  expce 15407  cosccos 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-cos 15416
This theorem is referenced by:  rpcoshcl  15502  tanhlt1  15505  sinhpcosh  44824
  Copyright terms: Public domain W3C validator