MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coshval Structured version   Visualization version   GIF version

Theorem coshval 16066
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
coshval (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))

Proof of Theorem coshval
StepHypRef Expression
1 ax-icn 11072 . . . 4 i ∈ ℂ
2 mulcl 11097 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 690 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 cosval 16034 . . 3 ((i · 𝐴) ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
53, 4syl 17 . 2 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2))
6 negcl 11367 . . . . 5 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7 efcl 15991 . . . . 5 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
9 efcl 15991 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
10 ixi 11753 . . . . . . . 8 (i · i) = -1
1110oveq1i 7362 . . . . . . 7 ((i · i) · 𝐴) = (-1 · 𝐴)
12 mulass 11101 . . . . . . . 8 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
131, 1, 12mp3an12 1453 . . . . . . 7 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
14 mulm1 11565 . . . . . . 7 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
1511, 13, 143eqtr3a 2792 . . . . . 6 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
1615fveq2d 6832 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
171, 1mulneg1i 11570 . . . . . . . . 9 (-i · i) = -(i · i)
1810negeqi 11360 . . . . . . . . 9 -(i · i) = --1
19 negneg1e1 12121 . . . . . . . . 9 --1 = 1
2017, 18, 193eqtri 2760 . . . . . . . 8 (-i · i) = 1
2120oveq1i 7362 . . . . . . 7 ((-i · i) · 𝐴) = (1 · 𝐴)
22 negicn 11368 . . . . . . . 8 -i ∈ ℂ
23 mulass 11101 . . . . . . . 8 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
2422, 1, 23mp3an12 1453 . . . . . . 7 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
25 mullid 11118 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2621, 24, 253eqtr3a 2792 . . . . . 6 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2726fveq2d 6832 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
2816, 27oveq12d 7370 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) + (exp‘𝐴)))
298, 9, 28comraddd 11334 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘𝐴) + (exp‘-𝐴)))
3029oveq1d 7367 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
315, 30eqtrd 2768 1 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  cc 11011  1c1 11014  ici 11015   + caddc 11016   · cmul 11018  -cneg 11352   / cdiv 11781  2c2 12187  expce 15970  cosccos 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-cos 15979
This theorem is referenced by:  rpcoshcl  16068  tanhlt1  16071  sinhpcosh  49865
  Copyright terms: Public domain W3C validator