| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coshval | Structured version Visualization version GIF version | ||
| Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| coshval | ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11072 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11097 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | cosval 16034 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2)) |
| 6 | negcl 11367 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 7 | efcl 15991 | . . . . 5 ⊢ (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) |
| 9 | efcl 15991 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 10 | ixi 11753 | . . . . . . . 8 ⊢ (i · i) = -1 | |
| 11 | 10 | oveq1i 7362 | . . . . . . 7 ⊢ ((i · i) · 𝐴) = (-1 · 𝐴) |
| 12 | mulass 11101 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴))) | |
| 13 | 1, 1, 12 | mp3an12 1453 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴))) |
| 14 | mulm1 11565 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 15 | 11, 13, 14 | 3eqtr3a 2792 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴) |
| 16 | 15 | fveq2d 6832 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴)) |
| 17 | 1, 1 | mulneg1i 11570 | . . . . . . . . 9 ⊢ (-i · i) = -(i · i) |
| 18 | 10 | negeqi 11360 | . . . . . . . . 9 ⊢ -(i · i) = --1 |
| 19 | negneg1e1 12121 | . . . . . . . . 9 ⊢ --1 = 1 | |
| 20 | 17, 18, 19 | 3eqtri 2760 | . . . . . . . 8 ⊢ (-i · i) = 1 |
| 21 | 20 | oveq1i 7362 | . . . . . . 7 ⊢ ((-i · i) · 𝐴) = (1 · 𝐴) |
| 22 | negicn 11368 | . . . . . . . 8 ⊢ -i ∈ ℂ | |
| 23 | mulass 11101 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴))) | |
| 24 | 22, 1, 23 | mp3an12 1453 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴))) |
| 25 | mullid 11118 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 26 | 21, 24, 25 | 3eqtr3a 2792 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴) |
| 27 | 26 | fveq2d 6832 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴)) |
| 28 | 16, 27 | oveq12d 7370 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) + (exp‘𝐴))) |
| 29 | 8, 9, 28 | comraddd 11334 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘𝐴) + (exp‘-𝐴))) |
| 30 | 29 | oveq1d 7367 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
| 31 | 5, 30 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 1c1 11014 ici 11015 + caddc 11016 · cmul 11018 -cneg 11352 / cdiv 11781 2c2 12187 expce 15970 cosccos 15973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-fac 14183 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-cos 15979 |
| This theorem is referenced by: rpcoshcl 16068 tanhlt1 16071 sinhpcosh 49865 |
| Copyright terms: Public domain | W3C validator |