![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coshval | Structured version Visualization version GIF version |
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
Ref | Expression |
---|---|
coshval | ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10281 | . . . 4 ⊢ i ∈ ℂ | |
2 | mulcl 10306 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 682 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
4 | cosval 15186 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2)) |
6 | ixi 10946 | . . . . . . . 8 ⊢ (i · i) = -1 | |
7 | 6 | oveq1i 6886 | . . . . . . 7 ⊢ ((i · i) · 𝐴) = (-1 · 𝐴) |
8 | mulass 10310 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴))) | |
9 | 1, 1, 8 | mp3an12 1576 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴))) |
10 | mulm1 10761 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
11 | 7, 9, 10 | 3eqtr3a 2855 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴) |
12 | 11 | fveq2d 6413 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴)) |
13 | 1, 1 | mulneg1i 10766 | . . . . . . . . 9 ⊢ (-i · i) = -(i · i) |
14 | 6 | negeqi 10563 | . . . . . . . . 9 ⊢ -(i · i) = --1 |
15 | negneg1e1 11434 | . . . . . . . . 9 ⊢ --1 = 1 | |
16 | 13, 14, 15 | 3eqtri 2823 | . . . . . . . 8 ⊢ (-i · i) = 1 |
17 | 16 | oveq1i 6886 | . . . . . . 7 ⊢ ((-i · i) · 𝐴) = (1 · 𝐴) |
18 | negicn 10571 | . . . . . . . 8 ⊢ -i ∈ ℂ | |
19 | mulass 10310 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴))) | |
20 | 18, 1, 19 | mp3an12 1576 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴))) |
21 | mulid2 10325 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
22 | 17, 20, 21 | 3eqtr3a 2855 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴) |
23 | 22 | fveq2d 6413 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴)) |
24 | 12, 23 | oveq12d 6894 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) + (exp‘𝐴))) |
25 | negcl 10570 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
26 | efcl 15146 | . . . . . 6 ⊢ (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) |
28 | efcl 15146 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
29 | 27, 28 | addcomd 10526 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘-𝐴) + (exp‘𝐴)) = ((exp‘𝐴) + (exp‘-𝐴))) |
30 | 24, 29 | eqtrd 2831 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) = ((exp‘𝐴) + (exp‘-𝐴))) |
31 | 30 | oveq1d 6891 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) + (exp‘(-i · (i · 𝐴)))) / 2) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
32 | 5, 31 | eqtrd 2831 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 ℂcc 10220 1c1 10223 ici 10224 + caddc 10225 · cmul 10227 -cneg 10555 / cdiv 10974 2c2 11364 expce 15125 cosccos 15128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-pm 8096 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-ico 12426 df-fz 12577 df-fzo 12717 df-fl 12844 df-seq 13052 df-exp 13111 df-fac 13310 df-hash 13367 df-shft 14145 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-limsup 14540 df-clim 14557 df-rlim 14558 df-sum 14755 df-ef 15131 df-cos 15134 |
This theorem is referenced by: rpcoshcl 15220 tanhlt1 15223 sinhpcosh 43271 |
Copyright terms: Public domain | W3C validator |