![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > partimeq | Structured version Visualization version GIF version |
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 37549. (Contributed by Peter Mazsa, 25-Dec-2024.) |
Ref | Expression |
---|---|
partimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossex 37289 | . 2 ⊢ (𝑅 ∈ 𝑉 → ≀ 𝑅 ∈ V) | |
2 | partim 37678 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
3 | erimeq 37549 | . 2 ⊢ ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | |
4 | 1, 2, 3 | syl2im 40 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ≀ ccoss 37043 ∼ ccoels 37044 ErALTV werALTV 37069 Part wpart 37082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 df-coss 37281 df-coels 37282 df-refrel 37382 df-cnvrefrel 37397 df-symrel 37414 df-trrel 37444 df-eqvrel 37455 df-dmqs 37509 df-erALTV 37534 df-disjALTV 37575 df-part 37636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |