Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > partimeq | Structured version Visualization version GIF version |
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 36918. (Contributed by Peter Mazsa, 25-Dec-2024.) |
Ref | Expression |
---|---|
partimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossex 36658 | . 2 ⊢ (𝑅 ∈ 𝑉 → ≀ 𝑅 ∈ V) | |
2 | partim 37047 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
3 | erimeq 36918 | . 2 ⊢ ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | |
4 | 1, 2, 3 | syl2im 40 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ≀ ccoss 36410 ∼ ccoels 36411 ErALTV werALTV 36436 Part wpart 36449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5512 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8549 df-qs 8553 df-coss 36650 df-coels 36651 df-refrel 36751 df-cnvrefrel 36766 df-symrel 36783 df-trrel 36813 df-eqvrel 36824 df-dmqs 36878 df-erALTV 36903 df-disjALTV 36944 df-part 37005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |