| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partimeq | Structured version Visualization version GIF version | ||
| Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38678. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| Ref | Expression |
|---|---|
| partimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38417 | . 2 ⊢ (𝑅 ∈ 𝑉 → ≀ 𝑅 ∈ V) | |
| 2 | partim 38807 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
| 3 | erimeq 38678 | . 2 ⊢ ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | |
| 4 | 1, 2, 3 | syl2im 40 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ≀ ccoss 38176 ∼ ccoels 38177 ErALTV werALTV 38202 Part wpart 38215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 df-coss 38409 df-coels 38410 df-refrel 38510 df-cnvrefrel 38525 df-symrel 38542 df-trrel 38572 df-eqvrel 38583 df-dmqs 38637 df-erALTV 38663 df-disjALTV 38704 df-part 38765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |