Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partimeq Structured version   Visualization version   GIF version

Theorem partimeq 37048
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 36918. (Contributed by Peter Mazsa, 25-Dec-2024.)
Assertion
Ref Expression
partimeq (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))

Proof of Theorem partimeq
StepHypRef Expression
1 cossex 36658 . 2 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 partim 37047 . 2 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
3 erimeq 36918 . 2 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅))
41, 2, 3syl2im 40 1 (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3440  ccoss 36410  ccoels 36411   ErALTV werALTV 36436   Part wpart 36449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5512  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ec 8549  df-qs 8553  df-coss 36650  df-coels 36651  df-refrel 36751  df-cnvrefrel 36766  df-symrel 36783  df-trrel 36813  df-eqvrel 36824  df-dmqs 36878  df-erALTV 36903  df-disjALTV 36944  df-part 37005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator