Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partimeq Structured version   Visualization version   GIF version

Theorem partimeq 37679
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 37549. (Contributed by Peter Mazsa, 25-Dec-2024.)
Assertion
Ref Expression
partimeq (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))

Proof of Theorem partimeq
StepHypRef Expression
1 cossex 37289 . 2 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 partim 37678 . 2 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
3 erimeq 37549 . 2 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅))
41, 2, 3syl2im 40 1 (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  ccoss 37043  ccoels 37044   ErALTV werALTV 37069   Part wpart 37082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-id 5575  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705  df-qs 8709  df-coss 37281  df-coels 37282  df-refrel 37382  df-cnvrefrel 37397  df-symrel 37414  df-trrel 37444  df-eqvrel 37455  df-dmqs 37509  df-erALTV 37534  df-disjALTV 37575  df-part 37636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator