Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partimeq Structured version   Visualization version   GIF version

Theorem partimeq 38313
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38183. (Contributed by Peter Mazsa, 25-Dec-2024.)
Assertion
Ref Expression
partimeq (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))

Proof of Theorem partimeq
StepHypRef Expression
1 cossex 37923 . 2 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 partim 38312 . 2 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
3 erimeq 38183 . 2 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅))
41, 2, 3syl2im 40 1 (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3473  ccoss 37681  ccoels 37682   ErALTV werALTV 37707   Part wpart 37720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-id 5580  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ec 8733  df-qs 8737  df-coss 37915  df-coels 37916  df-refrel 38016  df-cnvrefrel 38031  df-symrel 38048  df-trrel 38078  df-eqvrel 38089  df-dmqs 38143  df-erALTV 38168  df-disjALTV 38209  df-part 38270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator