| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partimeq | Structured version Visualization version GIF version | ||
| Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38697. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| Ref | Expression |
|---|---|
| partimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38437 | . 2 ⊢ (𝑅 ∈ 𝑉 → ≀ 𝑅 ∈ V) | |
| 2 | partim 38826 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
| 3 | erimeq 38697 | . 2 ⊢ ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | |
| 4 | 1, 2, 3 | syl2im 40 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ≀ ccoss 38199 ∼ ccoels 38200 ErALTV werALTV 38225 Part wpart 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 df-coss 38429 df-coels 38430 df-refrel 38530 df-cnvrefrel 38545 df-symrel 38562 df-trrel 38592 df-eqvrel 38603 df-dmqs 38657 df-erALTV 38682 df-disjALTV 38723 df-part 38784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |