Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partimeq Structured version   Visualization version   GIF version

Theorem partimeq 38765
Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38635. (Contributed by Peter Mazsa, 25-Dec-2024.)
Assertion
Ref Expression
partimeq (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))

Proof of Theorem partimeq
StepHypRef Expression
1 cossex 38375 . 2 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 partim 38764 . 2 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
3 erimeq 38635 . 2 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅))
41, 2, 3syl2im 40 1 (𝑅𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  ccoss 38135  ccoels 38136   ErALTV werALTV 38161   Part wpart 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-coss 38367  df-coels 38368  df-refrel 38468  df-cnvrefrel 38483  df-symrel 38500  df-trrel 38530  df-eqvrel 38541  df-dmqs 38595  df-erALTV 38620  df-disjALTV 38661  df-part 38722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator