| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partimeq | Structured version Visualization version GIF version | ||
| Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38787. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| Ref | Expression |
|---|---|
| partimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38531 | . 2 ⊢ (𝑅 ∈ 𝑉 → ≀ 𝑅 ∈ V) | |
| 2 | partim 38916 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
| 3 | erimeq 38787 | . 2 ⊢ ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ErALTV 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | |
| 4 | 1, 2, 3 | syl2im 40 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ≀ ccoss 38232 ∼ ccoels 38233 ErALTV werALTV 38258 Part wpart 38271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 df-coss 38523 df-coels 38524 df-refrel 38614 df-cnvrefrel 38629 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 df-dmqs 38745 df-erALTV 38772 df-disjALTV 38813 df-part 38874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |