MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Visualization version   GIF version

Theorem pm2mp 22741
Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pm2mp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐸   𝑛,𝐼   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑇,𝑛   𝑛,𝑌   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝑄(𝑛)   (𝑛)   (𝑛)   𝑋(𝑛)

Proof of Theorem pm2mp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2733 . . 3 (0g𝐶) = (0g𝐶)
3 crngring 20165 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
43anim2i 617 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
5 monmat2matmon.p . . . . . 6 𝑃 = (Poly1𝑅)
6 monmat2matmon.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 22608 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringcmn 20202 . . . . 5 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
94, 7, 83syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CMnd)
109adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐶 ∈ CMnd)
11 monmat2matmon.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
1211matring 22359 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
133, 12sylan2 593 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
14 monmat2matmon.q . . . . . 6 𝑄 = (Poly1𝐴)
1514ply1ring 22161 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
16 ringmnd 20163 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
1713, 15, 163syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑄 ∈ Mnd)
1817adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑄 ∈ Mnd)
19 nn0ex 12394 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ℕ0 ∈ V)
21 monmat2matmon.m1 . . . . . . 7 = ( ·𝑠𝑄)
22 monmat2matmon.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑄))
23 monmat2matmon.x . . . . . . 7 𝑋 = (var1𝐴)
24 eqid 2733 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
25 monmat2matmon.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 22732 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
273, 26sylan2 593 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
2827adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
29 ghmmhm 19140 . . . 4 (𝐼 ∈ (𝐶 GrpHom 𝑄) → 𝐼 ∈ (𝐶 MndHom 𝑄))
3028, 29syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 MndHom 𝑄))
314adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 480 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 elmapi 8779 . . . . . . 7 (𝑀 ∈ (𝐾m0) → 𝑀:ℕ0𝐾)
3433adantr 480 . . . . . 6 ((𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴)) → 𝑀:ℕ0𝐾)
3534adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑀:ℕ0𝐾)
3635ffvelcdmda 7023 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ 𝐾)
37 simpr 484 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
38 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
39 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
40 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
41 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
42 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 22656 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
4432, 36, 37, 43syl12anc 836 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
45 fvexd 6843 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (0g𝐶) ∈ V)
46 ovexd 7387 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V)
47 simpr 484 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → 𝑀 ∈ (𝐾m0))
48 fvex 6841 . . . . . . 7 (0g𝐴) ∈ V
49 fsuppmapnn0ub 13904 . . . . . . 7 ((𝑀 ∈ (𝐾m0) ∧ (0g𝐴) ∈ V) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
5047, 48, 49sylancl 586 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
51 csbov12g 7398 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))))
52 csbov1g 7399 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥 / 𝑛𝑛𝐸𝑌))
53 csbvarg 4383 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛𝑛 = 𝑥)
5453oveq1d 7367 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛𝑛𝐸𝑌) = (𝑥𝐸𝑌))
5552, 54eqtrd 2768 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥𝐸𝑌))
56 csbfv2g 6874 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇𝑥 / 𝑛(𝑀𝑛)))
57 csbfv2g 6874 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥 / 𝑛𝑛))
5853fveq2d 6832 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑀𝑥 / 𝑛𝑛) = (𝑀𝑥))
5957, 58eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥))
6059fveq2d 6832 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑇𝑥 / 𝑛(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6156, 60eqtrd 2768 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6255, 61oveq12d 7370 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6351, 62eqtrd 2768 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6463adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6564adantr 480 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
66 fveq2 6828 . . . . . . . . . . . . 13 ((𝑀𝑥) = (0g𝐴) → (𝑇‘(𝑀𝑥)) = (𝑇‘(0g𝐴)))
6766oveq2d 7368 . . . . . . . . . . . 12 ((𝑀𝑥) = (0g𝐴) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))))
6839, 11, 38, 5, 6, 1mat2pmatghm 22646 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
693, 68sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
7069ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
71 ghmmhm 19140 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 GrpHom 𝐶) → 𝑇 ∈ (𝐴 MndHom 𝐶))
72 eqid 2733 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g𝐴)
7372, 2mhm0 18704 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 MndHom 𝐶) → (𝑇‘(0g𝐴)) = (0g𝐶))
7470, 71, 733syl 18 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑇‘(0g𝐴)) = (0g𝐶))
7574oveq2d 7368 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = ((𝑥𝐸𝑌) · (0g𝐶)))
765ply1ring 22161 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
773, 76syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
786matlmod 22345 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ LMod)
7977, 78sylan2 593 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ LMod)
8079ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈ LMod)
81 eqid 2733 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑃) = (mulGrp‘𝑃)
82 eqid 2733 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘𝑃)
8381, 82mgpbas 20065 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
8477adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
8581ringmgp 20159 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
8684, 85syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
8786ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
88 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
893adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9042, 5, 82vr1cl 22131 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
9189, 90syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ (Base‘𝑃))
9291ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
9383, 41, 87, 88, 92mulgnn0cld 19010 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
945ply1crng 22112 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
956matsca2 22336 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9694, 95sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9796eqcomd 2739 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝐶) = 𝑃)
9897ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
9998fveq2d 6832 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
10093, 99eleqtrrd 2836 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶)))
101 eqid 2733 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
102 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
103101, 40, 102, 2lmodvs0 20831 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶))) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10480, 100, 103syl2anc 584 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10575, 104eqtrd 2768 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = (0g𝐶))
10667, 105sylan9eqr 2790 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = (0g𝐶))
10765, 106eqtrd 2768 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))
108107ex 412 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑀𝑥) = (0g𝐴) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
109108imim2d 57 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
110109ralimdva 3145 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
111110reximdva 3146 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
11250, 111syld 47 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
113112impr 454 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
11445, 46, 113mptnn0fsupp 13906 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) finSupp (0g𝐶))
1151, 2, 10, 18, 20, 30, 44, 114gsummptmhm 19854 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))))
116 simpll 766 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
1175, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 22740 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
118116, 36, 37, 117syl12anc 836 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
119118mpteq2dva 5186 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋))))
120119oveq2d 7368 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
121115, 120eqtr3d 2770 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  csb 3846   class class class wbr 5093  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252   < clt 11153  0cn0 12388  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644   MndHom cmhm 18691  .gcmg 18982   GrpHom cghm 19126  CMndccmn 19694  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  LModclmod 20795  var1cv1 22089  Poly1cpl1 22090   Mat cmat 22323   matToPolyMat cmat2pmat 22620   pMatToMatPoly cpm2mp 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-assa 21792  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mamu 22307  df-mat 22324  df-mat2pmat 22623  df-decpmat 22679  df-pm2mp 22709
This theorem is referenced by:  cpmidpmat  22789  cpmadumatpoly  22799
  Copyright terms: Public domain W3C validator