MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Visualization version   GIF version

Theorem pm2mp 21576
Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pm2mp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐸   𝑛,𝐼   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑇,𝑛   𝑛,𝑌   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝑄(𝑛)   (𝑛)   (𝑛)   𝑋(𝑛)

Proof of Theorem pm2mp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2738 . . 3 (0g𝐶) = (0g𝐶)
3 crngring 19428 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
43anim2i 620 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
5 monmat2matmon.p . . . . . 6 𝑃 = (Poly1𝑅)
6 monmat2matmon.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 21443 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringcmn 19453 . . . . 5 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
94, 7, 83syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CMnd)
109adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐶 ∈ CMnd)
11 monmat2matmon.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
1211matring 21194 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
133, 12sylan2 596 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
14 monmat2matmon.q . . . . . 6 𝑄 = (Poly1𝐴)
1514ply1ring 21023 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
16 ringmnd 19426 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
1713, 15, 163syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑄 ∈ Mnd)
1817adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑄 ∈ Mnd)
19 nn0ex 11982 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ℕ0 ∈ V)
21 monmat2matmon.m1 . . . . . . 7 = ( ·𝑠𝑄)
22 monmat2matmon.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑄))
23 monmat2matmon.x . . . . . . 7 𝑋 = (var1𝐴)
24 eqid 2738 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
25 monmat2matmon.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 21567 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
273, 26sylan2 596 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
2827adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
29 ghmmhm 18486 . . . 4 (𝐼 ∈ (𝐶 GrpHom 𝑄) → 𝐼 ∈ (𝐶 MndHom 𝑄))
3028, 29syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 MndHom 𝑄))
314adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 484 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 elmapi 8459 . . . . . . 7 (𝑀 ∈ (𝐾m0) → 𝑀:ℕ0𝐾)
3433adantr 484 . . . . . 6 ((𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴)) → 𝑀:ℕ0𝐾)
3534adantl 485 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑀:ℕ0𝐾)
3635ffvelrnda 6861 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ 𝐾)
37 simpr 488 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
38 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
39 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
40 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
41 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
42 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 21491 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
4432, 36, 37, 43syl12anc 836 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
45 fvexd 6689 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (0g𝐶) ∈ V)
46 ovexd 7205 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V)
47 simpr 488 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → 𝑀 ∈ (𝐾m0))
48 fvex 6687 . . . . . . 7 (0g𝐴) ∈ V
49 fsuppmapnn0ub 13454 . . . . . . 7 ((𝑀 ∈ (𝐾m0) ∧ (0g𝐴) ∈ V) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
5047, 48, 49sylancl 589 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
51 csbov12g 7214 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))))
52 csbov1g 7215 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥 / 𝑛𝑛𝐸𝑌))
53 csbvarg 4321 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛𝑛 = 𝑥)
5453oveq1d 7185 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛𝑛𝐸𝑌) = (𝑥𝐸𝑌))
5552, 54eqtrd 2773 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥𝐸𝑌))
56 csbfv2g 6718 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇𝑥 / 𝑛(𝑀𝑛)))
57 csbfv2g 6718 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥 / 𝑛𝑛))
5853fveq2d 6678 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑀𝑥 / 𝑛𝑛) = (𝑀𝑥))
5957, 58eqtrd 2773 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥))
6059fveq2d 6678 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑇𝑥 / 𝑛(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6156, 60eqtrd 2773 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6255, 61oveq12d 7188 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6351, 62eqtrd 2773 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6463adantl 485 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6564adantr 484 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
66 fveq2 6674 . . . . . . . . . . . . 13 ((𝑀𝑥) = (0g𝐴) → (𝑇‘(𝑀𝑥)) = (𝑇‘(0g𝐴)))
6766oveq2d 7186 . . . . . . . . . . . 12 ((𝑀𝑥) = (0g𝐴) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))))
6839, 11, 38, 5, 6, 1mat2pmatghm 21481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
693, 68sylan2 596 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
7069ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
71 ghmmhm 18486 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 GrpHom 𝐶) → 𝑇 ∈ (𝐴 MndHom 𝐶))
72 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g𝐴)
7372, 2mhm0 18080 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 MndHom 𝐶) → (𝑇‘(0g𝐴)) = (0g𝐶))
7470, 71, 733syl 18 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑇‘(0g𝐴)) = (0g𝐶))
7574oveq2d 7186 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = ((𝑥𝐸𝑌) · (0g𝐶)))
765ply1ring 21023 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
773, 76syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
786matlmod 21180 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ LMod)
7977, 78sylan2 596 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ LMod)
8079ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈ LMod)
8177adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
82 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑃) = (mulGrp‘𝑃)
8382ringmgp 19422 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
8481, 83syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
8584ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
86 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
873adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
88 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
8942, 5, 88vr1cl 20992 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
9087, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ (Base‘𝑃))
9190ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
9282, 88mgpbas 19364 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
9392, 41mulgnn0cl 18362 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑥 ∈ ℕ0𝑌 ∈ (Base‘𝑃)) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
9485, 86, 91, 93syl3anc 1372 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
955ply1crng 20973 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
966matsca2 21171 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9795, 96sylan2 596 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9897eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝐶) = 𝑃)
9998ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
10099fveq2d 6678 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
10194, 100eleqtrrd 2836 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶)))
102 eqid 2738 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
103 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
104102, 40, 103, 2lmodvs0 19787 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶))) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10580, 101, 104syl2anc 587 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10675, 105eqtrd 2773 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = (0g𝐶))
10767, 106sylan9eqr 2795 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = (0g𝐶))
10865, 107eqtrd 2773 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))
109108ex 416 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑀𝑥) = (0g𝐴) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
110109imim2d 57 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
111110ralimdva 3091 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
112111reximdva 3184 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
11350, 112syld 47 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
114113impr 458 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
11545, 46, 114mptnn0fsupp 13456 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) finSupp (0g𝐶))
1161, 2, 10, 18, 20, 30, 44, 115gsummptmhm 19179 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))))
117 simpll 767 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
1185, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 21575 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
119117, 36, 37, 118syl12anc 836 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
120119mpteq2dva 5125 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋))))
121120oveq2d 7186 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
122116, 121eqtr3d 2775 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  Vcvv 3398  csb 3790   class class class wbr 5030  cmpt 5110  wf 6335  cfv 6339  (class class class)co 7170  m cmap 8437  Fincfn 8555   finSupp cfsupp 8906   < clt 10753  0cn0 11976  Basecbs 16586  Scalarcsca 16671   ·𝑠 cvsca 16672  0gc0g 16816   Σg cgsu 16817  Mndcmnd 18027   MndHom cmhm 18070  .gcmg 18342   GrpHom cghm 18473  CMndccmn 19024  mulGrpcmgp 19358  Ringcrg 19416  CRingccrg 19417  LModclmod 19753  var1cv1 20951  Poly1cpl1 20952   Mat cmat 21158   matToPolyMat cmat2pmat 21455   pMatToMatPoly cpm2mp 21543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-ot 4525  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-sup 8979  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-fzo 13125  df-seq 13461  df-hash 13783  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-hom 16692  df-cco 16693  df-0g 16818  df-gsum 16819  df-prds 16824  df-pws 16826  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-mulg 18343  df-subg 18394  df-ghm 18474  df-cntz 18565  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-subrg 19652  df-lmod 19755  df-lss 19823  df-sra 20063  df-rgmod 20064  df-dsmm 20548  df-frlm 20563  df-assa 20669  df-ascl 20671  df-psr 20722  df-mvr 20723  df-mpl 20724  df-opsr 20726  df-psr1 20955  df-vr1 20956  df-ply1 20957  df-coe1 20958  df-mamu 21137  df-mat 21159  df-mat2pmat 21458  df-decpmat 21514  df-pm2mp 21544
This theorem is referenced by:  cpmidpmat  21624  cpmadumatpoly  21634
  Copyright terms: Public domain W3C validator