Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Visualization version   GIF version

Theorem pm2mp 21425
 Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pm2mp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐸   𝑛,𝐼   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑇,𝑛   𝑛,𝑌   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝑄(𝑛)   (𝑛)   (𝑛)   𝑋(𝑛)

Proof of Theorem pm2mp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2819 . . 3 (0g𝐶) = (0g𝐶)
3 crngring 19300 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
43anim2i 618 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
5 monmat2matmon.p . . . . . 6 𝑃 = (Poly1𝑅)
6 monmat2matmon.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 21293 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringcmn 19323 . . . . 5 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
94, 7, 83syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CMnd)
109adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐶 ∈ CMnd)
11 monmat2matmon.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
1211matring 21044 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
133, 12sylan2 594 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
14 monmat2matmon.q . . . . . 6 𝑄 = (Poly1𝐴)
1514ply1ring 20408 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
16 ringmnd 19298 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
1713, 15, 163syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑄 ∈ Mnd)
1817adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑄 ∈ Mnd)
19 nn0ex 11895 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ℕ0 ∈ V)
21 monmat2matmon.m1 . . . . . . 7 = ( ·𝑠𝑄)
22 monmat2matmon.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑄))
23 monmat2matmon.x . . . . . . 7 𝑋 = (var1𝐴)
24 eqid 2819 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
25 monmat2matmon.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 21416 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
273, 26sylan2 594 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
2827adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
29 ghmmhm 18360 . . . 4 (𝐼 ∈ (𝐶 GrpHom 𝑄) → 𝐼 ∈ (𝐶 MndHom 𝑄))
3028, 29syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 MndHom 𝑄))
314adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 483 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 elmapi 8420 . . . . . . 7 (𝑀 ∈ (𝐾m0) → 𝑀:ℕ0𝐾)
3433adantr 483 . . . . . 6 ((𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴)) → 𝑀:ℕ0𝐾)
3534adantl 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑀:ℕ0𝐾)
3635ffvelrnda 6844 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ 𝐾)
37 simpr 487 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
38 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
39 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
40 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
41 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
42 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 21340 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
4432, 36, 37, 43syl12anc 834 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
45 fvexd 6678 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (0g𝐶) ∈ V)
46 ovexd 7183 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V)
47 simpr 487 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → 𝑀 ∈ (𝐾m0))
48 fvex 6676 . . . . . . 7 (0g𝐴) ∈ V
49 fsuppmapnn0ub 13355 . . . . . . 7 ((𝑀 ∈ (𝐾m0) ∧ (0g𝐴) ∈ V) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
5047, 48, 49sylancl 588 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
51 csbov12g 7192 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))))
52 csbov1g 7193 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥 / 𝑛𝑛𝐸𝑌))
53 csbvarg 4381 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛𝑛 = 𝑥)
5453oveq1d 7163 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛𝑛𝐸𝑌) = (𝑥𝐸𝑌))
5552, 54eqtrd 2854 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥𝐸𝑌))
56 csbfv2g 6707 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇𝑥 / 𝑛(𝑀𝑛)))
57 csbfv2g 6707 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥 / 𝑛𝑛))
5853fveq2d 6667 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑀𝑥 / 𝑛𝑛) = (𝑀𝑥))
5957, 58eqtrd 2854 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥))
6059fveq2d 6667 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑇𝑥 / 𝑛(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6156, 60eqtrd 2854 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6255, 61oveq12d 7166 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6351, 62eqtrd 2854 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6463adantl 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6564adantr 483 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
66 fveq2 6663 . . . . . . . . . . . . 13 ((𝑀𝑥) = (0g𝐴) → (𝑇‘(𝑀𝑥)) = (𝑇‘(0g𝐴)))
6766oveq2d 7164 . . . . . . . . . . . 12 ((𝑀𝑥) = (0g𝐴) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))))
6839, 11, 38, 5, 6, 1mat2pmatghm 21330 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
693, 68sylan2 594 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
7069ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
71 ghmmhm 18360 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 GrpHom 𝐶) → 𝑇 ∈ (𝐴 MndHom 𝐶))
72 eqid 2819 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g𝐴)
7372, 2mhm0 17956 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 MndHom 𝐶) → (𝑇‘(0g𝐴)) = (0g𝐶))
7470, 71, 733syl 18 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑇‘(0g𝐴)) = (0g𝐶))
7574oveq2d 7164 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = ((𝑥𝐸𝑌) · (0g𝐶)))
765ply1ring 20408 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
773, 76syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
786matlmod 21030 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ LMod)
7977, 78sylan2 594 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ LMod)
8079ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈ LMod)
8177adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
82 eqid 2819 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑃) = (mulGrp‘𝑃)
8382ringmgp 19295 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
8481, 83syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
8584ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
86 simpr 487 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
873adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
88 eqid 2819 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
8942, 5, 88vr1cl 20377 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
9087, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ (Base‘𝑃))
9190ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
9282, 88mgpbas 19237 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
9392, 41mulgnn0cl 18236 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑥 ∈ ℕ0𝑌 ∈ (Base‘𝑃)) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
9485, 86, 91, 93syl3anc 1365 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
955ply1crng 20358 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
966matsca2 21021 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9795, 96sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9897eqcomd 2825 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝐶) = 𝑃)
9998ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
10099fveq2d 6667 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
10194, 100eleqtrrd 2914 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶)))
102 eqid 2819 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
103 eqid 2819 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
104102, 40, 103, 2lmodvs0 19660 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶))) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10580, 101, 104syl2anc 586 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10675, 105eqtrd 2854 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = (0g𝐶))
10767, 106sylan9eqr 2876 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = (0g𝐶))
10865, 107eqtrd 2854 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))
109108ex 415 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑀𝑥) = (0g𝐴) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
110109imim2d 57 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
111110ralimdva 3175 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) ∧ 𝑦 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
112111reximdva 3272 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
11350, 112syld 47 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾m0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
114113impr 457 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
11545, 46, 114mptnn0fsupp 13357 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) finSupp (0g𝐶))
1161, 2, 10, 18, 20, 30, 44, 115gsummptmhm 19052 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))))
117 simpll 765 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
1185, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 21424 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
119117, 36, 37, 118syl12anc 834 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
120119mpteq2dva 5152 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋))))
121120oveq2d 7164 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
122116, 121eqtr3d 2856 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾m0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ∀wral 3136  ∃wrex 3137  Vcvv 3493  ⦋csb 3881   class class class wbr 5057   ↦ cmpt 5137  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   ↑m cmap 8398  Fincfn 8501   finSupp cfsupp 8825   < clt 10667  ℕ0cn0 11889  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903   MndHom cmhm 17946  .gcmg 18216   GrpHom cghm 18347  CMndccmn 18898  mulGrpcmgp 19231  Ringcrg 19289  CRingccrg 19290  LModclmod 19626  var1cv1 20336  Poly1cpl1 20337   Mat cmat 21008   matToPolyMat cmat2pmat 21304   pMatToMatPoly cpm2mp 21392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-subrg 19525  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-assa 20077  df-ascl 20079  df-psr 20128  df-mvr 20129  df-mpl 20130  df-opsr 20132  df-psr1 20340  df-vr1 20341  df-ply1 20342  df-coe1 20343  df-dsmm 20868  df-frlm 20883  df-mamu 20987  df-mat 21009  df-mat2pmat 21307  df-decpmat 21363  df-pm2mp 21393 This theorem is referenced by:  cpmidpmat  21473  cpmadumatpoly  21483
 Copyright terms: Public domain W3C validator