Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem4 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem4 48306
Description: Lemma 4 for ply1mulgsum 48307. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘   𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘
Allowed substitution hints:   𝑃(𝑘,𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsumlem4
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6921 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (0g𝑃) ∈ V)
2 ovexd 7466 . 2 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ V)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
5 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
6 ply1mulgsum.c . . . 4 𝐶 = (coe1𝐿)
7 ply1mulgsum.x . . . 4 𝑋 = (var1𝑅)
8 ply1mulgsum.pm . . . 4 × = (.r𝑃)
9 ply1mulgsum.sm . . . 4 · = ( ·𝑠𝑃)
10 ply1mulgsum.rm . . . 4 = (.r𝑅)
11 ply1mulgsum.m . . . 4 𝑀 = (mulGrp‘𝑃)
12 ply1mulgsum.e . . . 4 = (.g𝑀)
133, 4, 5, 6, 7, 8, 9, 10, 11, 12ply1mulgsumlem2 48304 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14 vex 3484 . . . . . . . . 9 𝑛 ∈ V
15 csbov12g 7477 . . . . . . . . . 10 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)))
16 csbov2g 7479 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
17 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ V → 𝑛 ∈ V)
18 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
19 fvoveq1 7454 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
2019oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
2118, 20mpteq12dv 5233 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2221adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2317, 22csbied 3935 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2423oveq2d 7447 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
2516, 24eqtrd 2777 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
26 csbov1g 7478 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 / 𝑘𝑘 𝑋))
27 csbvarg 4434 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘𝑘 = 𝑛)
2827oveq1d 7446 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 / 𝑘𝑘 𝑋) = (𝑛 𝑋))
2926, 28eqtrd 2777 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 𝑋))
3025, 29oveq12d 7449 . . . . . . . . . 10 (𝑛 ∈ V → (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3115, 30eqtrd 2777 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3214, 31ax-mp 5 . . . . . . . 8 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋))
33 oveq1 7438 . . . . . . . . 9 ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = ((0g𝑅) · (𝑛 𝑋)))
343ply1sca 22254 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
35343ad2ant1 1134 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 = (Scalar‘𝑃))
3635ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
3736fveq2d 6910 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
3837oveq1d 7446 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)))
393ply1lmod 22253 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
40393ad2ant1 1134 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
4140ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ LMod)
4211, 4mgpbas 20142 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
433ply1ring 22249 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4411ringmgp 20236 . . . . . . . . . . . . . . 15 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
4543, 44syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
46453ad2ant1 1134 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
4746ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
48 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
497, 3, 4vr1cl 22219 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑋𝐵)
50493ad2ant1 1134 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
5150ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
5242, 12, 47, 48, 51mulgnn0cld 19113 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐵)
53 eqid 2737 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
54 eqid 2737 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
55 eqid 2737 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
564, 53, 9, 54, 55lmod0vs 20893 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ (𝑛 𝑋) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
5741, 52, 56syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
5838, 57eqtrd 2777 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = (0g𝑃))
5933, 58sylan9eqr 2799 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = (0g𝑃))
6032, 59eqtrid 2789 . . . . . . 7 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))
6160ex 412 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
6261imim2d 57 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6362ralimdva 3167 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6463reximdva 3168 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6513, 64mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
661, 2, 65mptnn0fsupp 14038 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  csb 3899   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431   finSupp cfsupp 9401  0cc0 11155   < clt 11295  cmin 11492  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  LModclmod 20858  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184
This theorem is referenced by:  ply1mulgsum  48307
  Copyright terms: Public domain W3C validator