Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem4 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem4 45687
Description: Lemma 4 for ply1mulgsum 45688. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘   𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘
Allowed substitution hints:   𝑃(𝑘,𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsumlem4
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6783 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (0g𝑃) ∈ V)
2 ovexd 7304 . 2 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ V)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
5 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
6 ply1mulgsum.c . . . 4 𝐶 = (coe1𝐿)
7 ply1mulgsum.x . . . 4 𝑋 = (var1𝑅)
8 ply1mulgsum.pm . . . 4 × = (.r𝑃)
9 ply1mulgsum.sm . . . 4 · = ( ·𝑠𝑃)
10 ply1mulgsum.rm . . . 4 = (.r𝑅)
11 ply1mulgsum.m . . . 4 𝑀 = (mulGrp‘𝑃)
12 ply1mulgsum.e . . . 4 = (.g𝑀)
133, 4, 5, 6, 7, 8, 9, 10, 11, 12ply1mulgsumlem2 45685 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14 vex 3435 . . . . . . . . 9 𝑛 ∈ V
15 csbov12g 7313 . . . . . . . . . 10 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)))
16 csbov2g 7315 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
17 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ V → 𝑛 ∈ V)
18 oveq2 7277 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
19 fvoveq1 7292 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
2019oveq2d 7285 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
2118, 20mpteq12dv 5166 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2221adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2317, 22csbied 3871 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2423oveq2d 7285 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
2516, 24eqtrd 2778 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
26 csbov1g 7314 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 / 𝑘𝑘 𝑋))
27 csbvarg 4367 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘𝑘 = 𝑛)
2827oveq1d 7284 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 / 𝑘𝑘 𝑋) = (𝑛 𝑋))
2926, 28eqtrd 2778 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 𝑋))
3025, 29oveq12d 7287 . . . . . . . . . 10 (𝑛 ∈ V → (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3115, 30eqtrd 2778 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3214, 31ax-mp 5 . . . . . . . 8 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋))
33 oveq1 7276 . . . . . . . . 9 ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = ((0g𝑅) · (𝑛 𝑋)))
343ply1sca 21413 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
35343ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 = (Scalar‘𝑃))
3635ad2antrr 723 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
3736fveq2d 6772 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
3837oveq1d 7284 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)))
393ply1lmod 21412 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
40393ad2ant1 1132 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
4140ad2antrr 723 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ LMod)
423ply1ring 21408 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4311ringmgp 19778 . . . . . . . . . . . . . . 15 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
4442, 43syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
45443ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
4645ad2antrr 723 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
47 simpr 485 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
487, 3, 4vr1cl 21377 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑋𝐵)
49483ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
5049ad2antrr 723 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
5111, 4mgpbas 19715 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5251, 12mulgnn0cl 18709 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 𝑋) ∈ 𝐵)
5346, 47, 50, 52syl3anc 1370 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐵)
54 eqid 2738 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
55 eqid 2738 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
56 eqid 2738 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
574, 54, 9, 55, 56lmod0vs 20145 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ (𝑛 𝑋) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
5841, 53, 57syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
5938, 58eqtrd 2778 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = (0g𝑃))
6033, 59sylan9eqr 2800 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = (0g𝑃))
6132, 60eqtrid 2790 . . . . . . 7 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))
6261ex 413 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
6362imim2d 57 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6463ralimdva 3108 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6564reximdva 3202 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6613, 65mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
671, 2, 66mptnn0fsupp 13706 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3431  csb 3833   class class class wbr 5075  cmpt 5158  cfv 6428  (class class class)co 7269   finSupp cfsupp 9117  0cc0 10860   < clt 10998  cmin 11194  0cn0 12222  ...cfz 13228  Basecbs 16901  .rcmulr 16952  Scalarcsca 16954   ·𝑠 cvsca 16955  0gc0g 17139   Σg cgsu 17140  Mndcmnd 18374  .gcmg 18689  mulGrpcmgp 19709  Ringcrg 19772  LModclmod 20112  var1cv1 21336  Poly1cpl1 21337  coe1cco1 21338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-ofr 7526  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8487  df-map 8606  df-pm 8607  df-ixp 8675  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-fsupp 9118  df-oi 9258  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-nn 11963  df-2 12025  df-3 12026  df-4 12027  df-5 12028  df-6 12029  df-7 12030  df-8 12031  df-9 12032  df-n0 12223  df-z 12309  df-dec 12427  df-uz 12572  df-fz 13229  df-fzo 13372  df-seq 13711  df-hash 14034  df-struct 16837  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-ress 16931  df-plusg 16964  df-mulr 16965  df-sca 16967  df-vsca 16968  df-tset 16970  df-ple 16971  df-0g 17141  df-gsum 17142  df-mre 17284  df-mrc 17285  df-acs 17287  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-mhm 18419  df-submnd 18420  df-grp 18569  df-minusg 18570  df-sbg 18571  df-mulg 18690  df-subg 18741  df-ghm 18821  df-cntz 18912  df-cmn 19377  df-abl 19378  df-mgp 19710  df-ur 19727  df-ring 19774  df-subrg 20011  df-lmod 20114  df-lss 20183  df-psr 21101  df-mvr 21102  df-mpl 21103  df-opsr 21105  df-psr1 21340  df-vr1 21341  df-ply1 21342  df-coe1 21343
This theorem is referenced by:  ply1mulgsum  45688
  Copyright terms: Public domain W3C validator