MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsupp0 Structured version   Visualization version   GIF version

Theorem mptscmfsupp0 20103
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsupp0.d (𝜑𝐷𝑉)
mptscmfsupp0.q (𝜑𝑄 ∈ LMod)
mptscmfsupp0.r (𝜑𝑅 = (Scalar‘𝑄))
mptscmfsupp0.k 𝐾 = (Base‘𝑄)
mptscmfsupp0.s ((𝜑𝑘𝐷) → 𝑆𝐵)
mptscmfsupp0.w ((𝜑𝑘𝐷) → 𝑊𝐾)
mptscmfsupp0.0 0 = (0g𝑄)
mptscmfsupp0.z 𝑍 = (0g𝑅)
mptscmfsupp0.m = ( ·𝑠𝑄)
mptscmfsupp0.f (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
Assertion
Ref Expression
mptscmfsupp0 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐷,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘
Allowed substitution hints:   𝑄(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)   𝑍(𝑘)

Proof of Theorem mptscmfsupp0
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptscmfsupp0.d . . 3 (𝜑𝐷𝑉)
21mptexd 7082 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V)
3 funmpt 6456 . . 3 Fun (𝑘𝐷 ↦ (𝑆 𝑊))
43a1i 11 . 2 (𝜑 → Fun (𝑘𝐷 ↦ (𝑆 𝑊)))
5 mptscmfsupp0.0 . . . 4 0 = (0g𝑄)
65fvexi 6770 . . 3 0 ∈ V
76a1i 11 . 2 (𝜑0 ∈ V)
8 mptscmfsupp0.f . . 3 (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
98fsuppimpd 9065 . 2 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) ∈ Fin)
10 simpr 484 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑𝐷)
11 mptscmfsupp0.s . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑆𝐵)
1211ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐷 𝑆𝐵)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑆𝐵)
14 rspcsbela 4366 . . . . . . . . 9 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑆𝐵) → 𝑑 / 𝑘𝑆𝐵)
1510, 13, 14syl2anc 583 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑆𝐵)
16 eqid 2738 . . . . . . . . 9 (𝑘𝐷𝑆) = (𝑘𝐷𝑆)
1716fvmpts 6860 . . . . . . . 8 ((𝑑𝐷𝑑 / 𝑘𝑆𝐵) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1810, 15, 17syl2anc 583 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1918eqeq1d 2740 . . . . . 6 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍𝑑 / 𝑘𝑆 = 𝑍))
20 oveq1 7262 . . . . . . . . 9 (𝑑 / 𝑘𝑆 = 𝑍 → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = (𝑍 𝑑 / 𝑘𝑊))
21 mptscmfsupp0.z . . . . . . . . . . . 12 𝑍 = (0g𝑅)
22 mptscmfsupp0.r . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑄))
2322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑅 = (Scalar‘𝑄))
2423fveq2d 6760 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑄)))
2521, 24eqtrid 2790 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑍 = (0g‘(Scalar‘𝑄)))
2625oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊))
27 mptscmfsupp0.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ LMod)
2827adantr 480 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑄 ∈ LMod)
29 mptscmfsupp0.w . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑊𝐾)
3029ralrimiva 3107 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐷 𝑊𝐾)
3130adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑊𝐾)
32 rspcsbela 4366 . . . . . . . . . . . 12 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑊𝐾) → 𝑑 / 𝑘𝑊𝐾)
3310, 31, 32syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑊𝐾)
34 mptscmfsupp0.k . . . . . . . . . . . 12 𝐾 = (Base‘𝑄)
35 eqid 2738 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
36 mptscmfsupp0.m . . . . . . . . . . . 12 = ( ·𝑠𝑄)
37 eqid 2738 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
3834, 35, 36, 37, 5lmod0vs 20071 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ 𝑑 / 𝑘𝑊𝐾) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
3928, 33, 38syl2anc 583 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
4026, 39eqtrd 2778 . . . . . . . . 9 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = 0 )
4120, 40sylan9eqr 2801 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 )
42 csbov12g 7299 . . . . . . . . . . . . . 14 (𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
4342adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
44 ovex 7288 . . . . . . . . . . . . 13 (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) ∈ V
4543, 44eqeltrdi 2847 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) ∈ V)
46 eqid 2738 . . . . . . . . . . . . 13 (𝑘𝐷 ↦ (𝑆 𝑊)) = (𝑘𝐷 ↦ (𝑆 𝑊))
4746fvmpts 6860 . . . . . . . . . . . 12 ((𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4810, 45, 47syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4948, 43eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
5049eqeq1d 2740 . . . . . . . . 9 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5150adantr 480 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5241, 51mpbird 256 . . . . . . 7 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 )
5352ex 412 . . . . . 6 ((𝜑𝑑𝐷) → (𝑑 / 𝑘𝑆 = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5419, 53sylbid 239 . . . . 5 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5554necon3d 2963 . . . 4 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 → ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍))
5655ss2rabdv 4005 . . 3 (𝜑 → {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 } ⊆ {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
57 ovex 7288 . . . . . 6 (𝑆 𝑊) ∈ V
5857rgenw 3075 . . . . 5 𝑘𝐷 (𝑆 𝑊) ∈ V
5946fnmpt 6557 . . . . 5 (∀𝑘𝐷 (𝑆 𝑊) ∈ V → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
6058, 59mp1i 13 . . . 4 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
61 suppvalfn 7956 . . . 4 (((𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷𝐷𝑉0 ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6260, 1, 7, 61syl3anc 1369 . . 3 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6316fnmpt 6557 . . . . 5 (∀𝑘𝐷 𝑆𝐵 → (𝑘𝐷𝑆) Fn 𝐷)
6412, 63syl 17 . . . 4 (𝜑 → (𝑘𝐷𝑆) Fn 𝐷)
6521fvexi 6770 . . . . 5 𝑍 ∈ V
6665a1i 11 . . . 4 (𝜑𝑍 ∈ V)
67 suppvalfn 7956 . . . 4 (((𝑘𝐷𝑆) Fn 𝐷𝐷𝑉𝑍 ∈ V) → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6864, 1, 66, 67syl3anc 1369 . . 3 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6956, 62, 683sstr4d 3964 . 2 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))
70 suppssfifsupp 9073 . 2 ((((𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V ∧ Fun (𝑘𝐷 ↦ (𝑆 𝑊)) ∧ 0 ∈ V) ∧ (((𝑘𝐷𝑆) supp 𝑍) ∈ Fin ∧ ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))) → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
712, 4, 7, 9, 69, 70syl32anc 1376 1 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  csb 3828  wss 3883   class class class wbr 5070  cmpt 5153  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-supp 7949  df-1o 8267  df-en 8692  df-fin 8695  df-fsupp 9059  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  mptscmfsuppd  20104  gsumsmonply1  21384  pm2mpcl  21854  mply1topmatcllem  21860  mp2pm2mplem5  21867  pm2mpghmlem2  21869  chcoeffeqlem  21942  lbsdiflsp0  31609  fedgmullem2  31613
  Copyright terms: Public domain W3C validator