MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsupp0 Structured version   Visualization version   GIF version

Theorem mptscmfsupp0 19693
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsupp0.d (𝜑𝐷𝑉)
mptscmfsupp0.q (𝜑𝑄 ∈ LMod)
mptscmfsupp0.r (𝜑𝑅 = (Scalar‘𝑄))
mptscmfsupp0.k 𝐾 = (Base‘𝑄)
mptscmfsupp0.s ((𝜑𝑘𝐷) → 𝑆𝐵)
mptscmfsupp0.w ((𝜑𝑘𝐷) → 𝑊𝐾)
mptscmfsupp0.0 0 = (0g𝑄)
mptscmfsupp0.z 𝑍 = (0g𝑅)
mptscmfsupp0.m = ( ·𝑠𝑄)
mptscmfsupp0.f (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
Assertion
Ref Expression
mptscmfsupp0 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐷,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘
Allowed substitution hints:   𝑄(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)   𝑍(𝑘)

Proof of Theorem mptscmfsupp0
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptscmfsupp0.d . . 3 (𝜑𝐷𝑉)
21mptexd 6981 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V)
3 funmpt 6387 . . 3 Fun (𝑘𝐷 ↦ (𝑆 𝑊))
43a1i 11 . 2 (𝜑 → Fun (𝑘𝐷 ↦ (𝑆 𝑊)))
5 mptscmfsupp0.0 . . . 4 0 = (0g𝑄)
65fvexi 6678 . . 3 0 ∈ V
76a1i 11 . 2 (𝜑0 ∈ V)
8 mptscmfsupp0.f . . 3 (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
98fsuppimpd 8834 . 2 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) ∈ Fin)
10 simpr 487 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑𝐷)
11 mptscmfsupp0.s . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑆𝐵)
1211ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐷 𝑆𝐵)
1312adantr 483 . . . . . . . . 9 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑆𝐵)
14 rspcsbela 4386 . . . . . . . . 9 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑆𝐵) → 𝑑 / 𝑘𝑆𝐵)
1510, 13, 14syl2anc 586 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑆𝐵)
16 eqid 2821 . . . . . . . . 9 (𝑘𝐷𝑆) = (𝑘𝐷𝑆)
1716fvmpts 6765 . . . . . . . 8 ((𝑑𝐷𝑑 / 𝑘𝑆𝐵) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1810, 15, 17syl2anc 586 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1918eqeq1d 2823 . . . . . 6 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍𝑑 / 𝑘𝑆 = 𝑍))
20 oveq1 7157 . . . . . . . . 9 (𝑑 / 𝑘𝑆 = 𝑍 → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = (𝑍 𝑑 / 𝑘𝑊))
21 mptscmfsupp0.z . . . . . . . . . . . 12 𝑍 = (0g𝑅)
22 mptscmfsupp0.r . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑄))
2322adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑅 = (Scalar‘𝑄))
2423fveq2d 6668 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑄)))
2521, 24syl5eq 2868 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑍 = (0g‘(Scalar‘𝑄)))
2625oveq1d 7165 . . . . . . . . . 10 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊))
27 mptscmfsupp0.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ LMod)
2827adantr 483 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑄 ∈ LMod)
29 mptscmfsupp0.w . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑊𝐾)
3029ralrimiva 3182 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐷 𝑊𝐾)
3130adantr 483 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑊𝐾)
32 rspcsbela 4386 . . . . . . . . . . . 12 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑊𝐾) → 𝑑 / 𝑘𝑊𝐾)
3310, 31, 32syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑊𝐾)
34 mptscmfsupp0.k . . . . . . . . . . . 12 𝐾 = (Base‘𝑄)
35 eqid 2821 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
36 mptscmfsupp0.m . . . . . . . . . . . 12 = ( ·𝑠𝑄)
37 eqid 2821 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
3834, 35, 36, 37, 5lmod0vs 19661 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ 𝑑 / 𝑘𝑊𝐾) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
3928, 33, 38syl2anc 586 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
4026, 39eqtrd 2856 . . . . . . . . 9 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = 0 )
4120, 40sylan9eqr 2878 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 )
42 csbov12g 7194 . . . . . . . . . . . . . 14 (𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
4342adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
44 ovex 7183 . . . . . . . . . . . . 13 (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) ∈ V
4543, 44eqeltrdi 2921 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) ∈ V)
46 eqid 2821 . . . . . . . . . . . . 13 (𝑘𝐷 ↦ (𝑆 𝑊)) = (𝑘𝐷 ↦ (𝑆 𝑊))
4746fvmpts 6765 . . . . . . . . . . . 12 ((𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4810, 45, 47syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4948, 43eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
5049eqeq1d 2823 . . . . . . . . 9 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5150adantr 483 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5241, 51mpbird 259 . . . . . . 7 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 )
5352ex 415 . . . . . 6 ((𝜑𝑑𝐷) → (𝑑 / 𝑘𝑆 = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5419, 53sylbid 242 . . . . 5 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5554necon3d 3037 . . . 4 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 → ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍))
5655ss2rabdv 4051 . . 3 (𝜑 → {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 } ⊆ {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
57 ovex 7183 . . . . . 6 (𝑆 𝑊) ∈ V
5857rgenw 3150 . . . . 5 𝑘𝐷 (𝑆 𝑊) ∈ V
5946fnmpt 6482 . . . . 5 (∀𝑘𝐷 (𝑆 𝑊) ∈ V → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
6058, 59mp1i 13 . . . 4 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
61 suppvalfn 7831 . . . 4 (((𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷𝐷𝑉0 ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6260, 1, 7, 61syl3anc 1367 . . 3 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6316fnmpt 6482 . . . . 5 (∀𝑘𝐷 𝑆𝐵 → (𝑘𝐷𝑆) Fn 𝐷)
6412, 63syl 17 . . . 4 (𝜑 → (𝑘𝐷𝑆) Fn 𝐷)
6521fvexi 6678 . . . . 5 𝑍 ∈ V
6665a1i 11 . . . 4 (𝜑𝑍 ∈ V)
67 suppvalfn 7831 . . . 4 (((𝑘𝐷𝑆) Fn 𝐷𝐷𝑉𝑍 ∈ V) → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6864, 1, 66, 67syl3anc 1367 . . 3 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6956, 62, 683sstr4d 4013 . 2 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))
70 suppssfifsupp 8842 . 2 ((((𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V ∧ Fun (𝑘𝐷 ↦ (𝑆 𝑊)) ∧ 0 ∈ V) ∧ (((𝑘𝐷𝑆) supp 𝑍) ∈ Fin ∧ ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))) → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
712, 4, 7, 9, 69, 70syl32anc 1374 1 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  csb 3882  wss 3935   class class class wbr 5058  cmpt 5138  Fun wfun 6343   Fn wfn 6344  cfv 6349  (class class class)co 7150   supp csupp 7824  Fincfn 8503   finSupp cfsupp 8827  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  LModclmod 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-supp 7825  df-er 8283  df-en 8504  df-fin 8507  df-fsupp 8828  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-ring 19293  df-lmod 19630
This theorem is referenced by:  mptscmfsuppd  19694  gsumsmonply1  20465  pm2mpcl  21399  mply1topmatcllem  21405  mp2pm2mplem5  21412  pm2mpghmlem2  21414  chcoeffeqlem  21487  lbsdiflsp0  31017  fedgmullem2  31021
  Copyright terms: Public domain W3C validator