Step | Hyp | Ref
| Expression |
1 | | mptscmfsupp0.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
2 | 1 | mptexd 7100 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) ∈ V) |
3 | | funmpt 6472 |
. . 3
⊢ Fun
(𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → Fun (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))) |
5 | | mptscmfsupp0.0 |
. . . 4
⊢ 0 =
(0g‘𝑄) |
6 | 5 | fvexi 6788 |
. . 3
⊢ 0 ∈
V |
7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 0 ∈ V) |
8 | | mptscmfsupp0.f |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ 𝑆) finSupp 𝑍) |
9 | 8 | fsuppimpd 9135 |
. 2
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍) ∈ Fin) |
10 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ 𝐷) |
11 | | mptscmfsupp0.s |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑆 ∈ 𝐵) |
12 | 11 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐷 𝑆 ∈ 𝐵) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ∀𝑘 ∈ 𝐷 𝑆 ∈ 𝐵) |
14 | | rspcsbela 4369 |
. . . . . . . . 9
⊢ ((𝑑 ∈ 𝐷 ∧ ∀𝑘 ∈ 𝐷 𝑆 ∈ 𝐵) → ⦋𝑑 / 𝑘⦌𝑆 ∈ 𝐵) |
15 | 10, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ⦋𝑑 / 𝑘⦌𝑆 ∈ 𝐵) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝐷 ↦ 𝑆) = (𝑘 ∈ 𝐷 ↦ 𝑆) |
17 | 16 | fvmpts 6878 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐷 ∧ ⦋𝑑 / 𝑘⦌𝑆 ∈ 𝐵) → ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) = ⦋𝑑 / 𝑘⦌𝑆) |
18 | 10, 15, 17 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) = ⦋𝑑 / 𝑘⦌𝑆) |
19 | 18 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) = 𝑍 ↔ ⦋𝑑 / 𝑘⦌𝑆 = 𝑍)) |
20 | | oveq1 7282 |
. . . . . . . . 9
⊢
(⦋𝑑 /
𝑘⦌𝑆 = 𝑍 → (⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊) = (𝑍 ∗
⦋𝑑 / 𝑘⦌𝑊)) |
21 | | mptscmfsupp0.z |
. . . . . . . . . . . 12
⊢ 𝑍 = (0g‘𝑅) |
22 | | mptscmfsupp0.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 = (Scalar‘𝑄)) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑅 = (Scalar‘𝑄)) |
24 | 23 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (0g‘𝑅) =
(0g‘(Scalar‘𝑄))) |
25 | 21, 24 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑍 = (0g‘(Scalar‘𝑄))) |
26 | 25 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑍 ∗
⦋𝑑 / 𝑘⦌𝑊) =
((0g‘(Scalar‘𝑄)) ∗
⦋𝑑 / 𝑘⦌𝑊)) |
27 | | mptscmfsupp0.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ LMod) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑄 ∈ LMod) |
29 | | mptscmfsupp0.w |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑊 ∈ 𝐾) |
30 | 29 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐷 𝑊 ∈ 𝐾) |
31 | 30 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ∀𝑘 ∈ 𝐷 𝑊 ∈ 𝐾) |
32 | | rspcsbela 4369 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ 𝐷 ∧ ∀𝑘 ∈ 𝐷 𝑊 ∈ 𝐾) → ⦋𝑑 / 𝑘⦌𝑊 ∈ 𝐾) |
33 | 10, 31, 32 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ⦋𝑑 / 𝑘⦌𝑊 ∈ 𝐾) |
34 | | mptscmfsupp0.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝑄) |
35 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
36 | | mptscmfsupp0.m |
. . . . . . . . . . . 12
⊢ ∗ = (
·𝑠 ‘𝑄) |
37 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝑄)) =
(0g‘(Scalar‘𝑄)) |
38 | 34, 35, 36, 37, 5 | lmod0vs 20156 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ LMod ∧
⦋𝑑 / 𝑘⦌𝑊 ∈ 𝐾) →
((0g‘(Scalar‘𝑄)) ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 ) |
39 | 28, 33, 38 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) →
((0g‘(Scalar‘𝑄)) ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 ) |
40 | 26, 39 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑍 ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 ) |
41 | 20, 40 | sylan9eqr 2800 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ ⦋𝑑 / 𝑘⦌𝑆 = 𝑍) → (⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 ) |
42 | | csbov12g 7319 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ 𝐷 → ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊) = (⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊)) |
43 | 42 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊) = (⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊)) |
44 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(⦋𝑑 /
𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊) ∈ V |
45 | 43, 44 | eqeltrdi 2847 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊) ∈ V) |
46 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) = (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) |
47 | 46 | fvmpts 6878 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ 𝐷 ∧ ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊) ∈ V) → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊)) |
48 | 10, 45, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = ⦋𝑑 / 𝑘⦌(𝑆 ∗ 𝑊)) |
49 | 48, 43 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = (⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊)) |
50 | 49 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = 0 ↔
(⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 )) |
51 | 50 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ ⦋𝑑 / 𝑘⦌𝑆 = 𝑍) → (((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = 0 ↔
(⦋𝑑 / 𝑘⦌𝑆 ∗
⦋𝑑 / 𝑘⦌𝑊) = 0 )) |
52 | 41, 51 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ ⦋𝑑 / 𝑘⦌𝑆 = 𝑍) → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = 0 ) |
53 | 52 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (⦋𝑑 / 𝑘⦌𝑆 = 𝑍 → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = 0 )) |
54 | 19, 53 | sylbid 239 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) = 𝑍 → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) = 0 )) |
55 | 54 | necon3d 2964 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) ≠ 0 → ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) ≠ 𝑍)) |
56 | 55 | ss2rabdv 4009 |
. . 3
⊢ (𝜑 → {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) ≠ 0 } ⊆ {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) ≠ 𝑍}) |
57 | | ovex 7308 |
. . . . . 6
⊢ (𝑆 ∗ 𝑊) ∈ V |
58 | 57 | rgenw 3076 |
. . . . 5
⊢
∀𝑘 ∈
𝐷 (𝑆 ∗ 𝑊) ∈ V |
59 | 46 | fnmpt 6573 |
. . . . 5
⊢
(∀𝑘 ∈
𝐷 (𝑆 ∗ 𝑊) ∈ V → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) Fn 𝐷) |
60 | 58, 59 | mp1i 13 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) Fn 𝐷) |
61 | | suppvalfn 7985 |
. . . 4
⊢ (((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 0 ∈ V) → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) supp 0 ) = {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) ≠ 0 }) |
62 | 60, 1, 7, 61 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) supp 0 ) = {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊))‘𝑑) ≠ 0 }) |
63 | 16 | fnmpt 6573 |
. . . . 5
⊢
(∀𝑘 ∈
𝐷 𝑆 ∈ 𝐵 → (𝑘 ∈ 𝐷 ↦ 𝑆) Fn 𝐷) |
64 | 12, 63 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ 𝑆) Fn 𝐷) |
65 | 21 | fvexi 6788 |
. . . . 5
⊢ 𝑍 ∈ V |
66 | 65 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ V) |
67 | | suppvalfn 7985 |
. . . 4
⊢ (((𝑘 ∈ 𝐷 ↦ 𝑆) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 𝑍 ∈ V) → ((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍) = {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) ≠ 𝑍}) |
68 | 64, 1, 66, 67 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍) = {𝑑 ∈ 𝐷 ∣ ((𝑘 ∈ 𝐷 ↦ 𝑆)‘𝑑) ≠ 𝑍}) |
69 | 56, 62, 68 | 3sstr4d 3968 |
. 2
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) supp 0 ) ⊆ ((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍)) |
70 | | suppssfifsupp 9143 |
. 2
⊢ ((((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) ∈ V ∧ Fun (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) ∧ 0 ∈ V) ∧ (((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍) ∈ Fin ∧ ((𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) supp 0 ) ⊆ ((𝑘 ∈ 𝐷 ↦ 𝑆) supp 𝑍))) → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) finSupp 0 ) |
71 | 2, 4, 7, 9, 69, 70 | syl32anc 1377 |
1
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) finSupp 0 ) |