MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsupp0 Structured version   Visualization version   GIF version

Theorem mptscmfsupp0 20858
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsupp0.d (𝜑𝐷𝑉)
mptscmfsupp0.q (𝜑𝑄 ∈ LMod)
mptscmfsupp0.r (𝜑𝑅 = (Scalar‘𝑄))
mptscmfsupp0.k 𝐾 = (Base‘𝑄)
mptscmfsupp0.s ((𝜑𝑘𝐷) → 𝑆𝐵)
mptscmfsupp0.w ((𝜑𝑘𝐷) → 𝑊𝐾)
mptscmfsupp0.0 0 = (0g𝑄)
mptscmfsupp0.z 𝑍 = (0g𝑅)
mptscmfsupp0.m = ( ·𝑠𝑄)
mptscmfsupp0.f (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
Assertion
Ref Expression
mptscmfsupp0 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐷,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘
Allowed substitution hints:   𝑄(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)   𝑍(𝑘)

Proof of Theorem mptscmfsupp0
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptscmfsupp0.d . . 3 (𝜑𝐷𝑉)
21mptexd 7158 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V)
3 funmpt 6519 . . 3 Fun (𝑘𝐷 ↦ (𝑆 𝑊))
43a1i 11 . 2 (𝜑 → Fun (𝑘𝐷 ↦ (𝑆 𝑊)))
5 mptscmfsupp0.0 . . . 4 0 = (0g𝑄)
65fvexi 6836 . . 3 0 ∈ V
76a1i 11 . 2 (𝜑0 ∈ V)
8 mptscmfsupp0.f . . 3 (𝜑 → (𝑘𝐷𝑆) finSupp 𝑍)
98fsuppimpd 9253 . 2 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) ∈ Fin)
10 simpr 484 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑𝐷)
11 mptscmfsupp0.s . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑆𝐵)
1211ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐷 𝑆𝐵)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑆𝐵)
14 rspcsbela 4388 . . . . . . . . 9 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑆𝐵) → 𝑑 / 𝑘𝑆𝐵)
1510, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑆𝐵)
16 eqid 2731 . . . . . . . . 9 (𝑘𝐷𝑆) = (𝑘𝐷𝑆)
1716fvmpts 6932 . . . . . . . 8 ((𝑑𝐷𝑑 / 𝑘𝑆𝐵) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1810, 15, 17syl2anc 584 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝑘𝐷𝑆)‘𝑑) = 𝑑 / 𝑘𝑆)
1918eqeq1d 2733 . . . . . 6 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍𝑑 / 𝑘𝑆 = 𝑍))
20 oveq1 7353 . . . . . . . . 9 (𝑑 / 𝑘𝑆 = 𝑍 → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = (𝑍 𝑑 / 𝑘𝑊))
21 mptscmfsupp0.z . . . . . . . . . . . 12 𝑍 = (0g𝑅)
22 mptscmfsupp0.r . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑄))
2322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑅 = (Scalar‘𝑄))
2423fveq2d 6826 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑄)))
2521, 24eqtrid 2778 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑍 = (0g‘(Scalar‘𝑄)))
2625oveq1d 7361 . . . . . . . . . 10 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊))
27 mptscmfsupp0.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ LMod)
2827adantr 480 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑄 ∈ LMod)
29 mptscmfsupp0.w . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑊𝐾)
3029ralrimiva 3124 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐷 𝑊𝐾)
3130adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → ∀𝑘𝐷 𝑊𝐾)
32 rspcsbela 4388 . . . . . . . . . . . 12 ((𝑑𝐷 ∧ ∀𝑘𝐷 𝑊𝐾) → 𝑑 / 𝑘𝑊𝐾)
3310, 31, 32syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝑑 / 𝑘𝑊𝐾)
34 mptscmfsupp0.k . . . . . . . . . . . 12 𝐾 = (Base‘𝑄)
35 eqid 2731 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
36 mptscmfsupp0.m . . . . . . . . . . . 12 = ( ·𝑠𝑄)
37 eqid 2731 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
3834, 35, 36, 37, 5lmod0vs 20826 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ 𝑑 / 𝑘𝑊𝐾) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
3928, 33, 38syl2anc 584 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((0g‘(Scalar‘𝑄)) 𝑑 / 𝑘𝑊) = 0 )
4026, 39eqtrd 2766 . . . . . . . . 9 ((𝜑𝑑𝐷) → (𝑍 𝑑 / 𝑘𝑊) = 0 )
4120, 40sylan9eqr 2788 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 )
42 csbov12g 7392 . . . . . . . . . . . . . 14 (𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
4342adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
44 ovex 7379 . . . . . . . . . . . . 13 (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) ∈ V
4543, 44eqeltrdi 2839 . . . . . . . . . . . 12 ((𝜑𝑑𝐷) → 𝑑 / 𝑘(𝑆 𝑊) ∈ V)
46 eqid 2731 . . . . . . . . . . . . 13 (𝑘𝐷 ↦ (𝑆 𝑊)) = (𝑘𝐷 ↦ (𝑆 𝑊))
4746fvmpts 6932 . . . . . . . . . . . 12 ((𝑑𝐷𝑑 / 𝑘(𝑆 𝑊) ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4810, 45, 47syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 𝑑 / 𝑘(𝑆 𝑊))
4948, 43eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑑𝐷) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊))
5049eqeq1d 2733 . . . . . . . . 9 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5150adantr 480 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ↔ (𝑑 / 𝑘𝑆 𝑑 / 𝑘𝑊) = 0 ))
5241, 51mpbird 257 . . . . . . 7 (((𝜑𝑑𝐷) ∧ 𝑑 / 𝑘𝑆 = 𝑍) → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 )
5352ex 412 . . . . . 6 ((𝜑𝑑𝐷) → (𝑑 / 𝑘𝑆 = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5419, 53sylbid 240 . . . . 5 ((𝜑𝑑𝐷) → (((𝑘𝐷𝑆)‘𝑑) = 𝑍 → ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) = 0 ))
5554necon3d 2949 . . . 4 ((𝜑𝑑𝐷) → (((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 → ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍))
5655ss2rabdv 4026 . . 3 (𝜑 → {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 } ⊆ {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
57 ovex 7379 . . . . . 6 (𝑆 𝑊) ∈ V
5857rgenw 3051 . . . . 5 𝑘𝐷 (𝑆 𝑊) ∈ V
5946fnmpt 6621 . . . . 5 (∀𝑘𝐷 (𝑆 𝑊) ∈ V → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
6058, 59mp1i 13 . . . 4 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷)
61 suppvalfn 8098 . . . 4 (((𝑘𝐷 ↦ (𝑆 𝑊)) Fn 𝐷𝐷𝑉0 ∈ V) → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6260, 1, 7, 61syl3anc 1373 . . 3 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) = {𝑑𝐷 ∣ ((𝑘𝐷 ↦ (𝑆 𝑊))‘𝑑) ≠ 0 })
6316fnmpt 6621 . . . . 5 (∀𝑘𝐷 𝑆𝐵 → (𝑘𝐷𝑆) Fn 𝐷)
6412, 63syl 17 . . . 4 (𝜑 → (𝑘𝐷𝑆) Fn 𝐷)
6521fvexi 6836 . . . . 5 𝑍 ∈ V
6665a1i 11 . . . 4 (𝜑𝑍 ∈ V)
67 suppvalfn 8098 . . . 4 (((𝑘𝐷𝑆) Fn 𝐷𝐷𝑉𝑍 ∈ V) → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6864, 1, 66, 67syl3anc 1373 . . 3 (𝜑 → ((𝑘𝐷𝑆) supp 𝑍) = {𝑑𝐷 ∣ ((𝑘𝐷𝑆)‘𝑑) ≠ 𝑍})
6956, 62, 683sstr4d 3990 . 2 (𝜑 → ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))
70 suppssfifsupp 9264 . 2 ((((𝑘𝐷 ↦ (𝑆 𝑊)) ∈ V ∧ Fun (𝑘𝐷 ↦ (𝑆 𝑊)) ∧ 0 ∈ V) ∧ (((𝑘𝐷𝑆) supp 𝑍) ∈ Fin ∧ ((𝑘𝐷 ↦ (𝑆 𝑊)) supp 0 ) ⊆ ((𝑘𝐷𝑆) supp 𝑍))) → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
712, 4, 7, 9, 69, 70syl32anc 1380 1 (𝜑 → (𝑘𝐷 ↦ (𝑆 𝑊)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  csb 3850  wss 3902   class class class wbr 5091  cmpt 5172  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  LModclmod 20791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-supp 8091  df-1o 8385  df-en 8870  df-fin 8873  df-fsupp 9246  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-ring 20151  df-lmod 20793
This theorem is referenced by:  mptscmfsuppd  20859  gsumsmonply1  22220  pm2mpcl  22710  mply1topmatcllem  22716  mp2pm2mplem5  22723  pm2mpghmlem2  22725  chcoeffeqlem  22798  lbsdiflsp0  33634  fedgmullem2  33638
  Copyright terms: Public domain W3C validator