![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbfv | Structured version Visualization version GIF version |
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbfv | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfv2g 6943 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘⦋𝐴 / 𝑥⦌𝑥)) | |
2 | csbvarg 4432 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
3 | 2 | fveq2d 6898 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘⦋𝐴 / 𝑥⦌𝑥) = (𝐹‘𝐴)) |
4 | 1, 3 | eqtrd 2765 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
5 | csbprc 4407 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = ∅) | |
6 | fvprc 6886 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
7 | 5, 6 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⦋csb 3890 ∅c0 4323 ‘cfv 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-dm 5687 df-iota 6499 df-fv 6555 |
This theorem is referenced by: mptcoe1fsupp 22144 mptcoe1matfsupp 22735 mp2pm2mplem4 22742 chfacfscmulfsupp 22792 chfacfpmmulfsupp 22796 cpmidpmatlem3 22805 cayhamlem4 22821 cayleyhamilton1 22825 logbmpt 26751 nbgrcl 29205 nbgrnvtx0 29209 iuninc 32409 disjxpin 32436 finixpnum 37165 cdlemkid3N 40492 cdlemkid4 40493 cdlemk39s 40498 mccllem 45065 clnbgrcl 47240 clnbgrnvtx0 47245 |
Copyright terms: Public domain | W3C validator |