MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv Structured version   Visualization version   GIF version

Theorem csbfv 6970
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem csbfv
StepHypRef Expression
1 csbfv2g 6969 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 4457 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 6924 . . 3 (𝐴 ∈ V → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2780 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
5 csbprc 4432 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = ∅)
6 fvprc 6912 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
75, 6eqtr4d 2783 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
84, 7pm2.61i 182 1 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  c0 4352  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581
This theorem is referenced by:  mptcoe1fsupp  22238  mptcoe1matfsupp  22829  mp2pm2mplem4  22836  chfacfscmulfsupp  22886  chfacfpmmulfsupp  22890  cpmidpmatlem3  22899  cayhamlem4  22915  cayleyhamilton1  22919  logbmpt  26849  nbgrcl  29370  nbgrnvtx0  29374  iuninc  32583  disjxpin  32610  finixpnum  37565  cdlemkid3N  40890  cdlemkid4  40891  cdlemk39s  40896  mccllem  45518  clnbgrcl  47695  clnbgrnvtx0  47700
  Copyright terms: Public domain W3C validator