MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv Structured version   Visualization version   GIF version

Theorem csbfv 6926
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem csbfv
StepHypRef Expression
1 csbfv2g 6925 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 4409 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 6880 . . 3 (𝐴 ∈ V → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2770 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
5 csbprc 4384 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = ∅)
6 fvprc 6868 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
75, 6eqtr4d 2773 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
84, 7pm2.61i 182 1 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  c0 4308  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-dm 5664  df-iota 6484  df-fv 6539
This theorem is referenced by:  mptcoe1fsupp  22151  mptcoe1matfsupp  22740  mp2pm2mplem4  22747  chfacfscmulfsupp  22797  chfacfpmmulfsupp  22801  cpmidpmatlem3  22810  cayhamlem4  22826  cayleyhamilton1  22830  logbmpt  26750  nbgrcl  29314  nbgrnvtx0  29318  iuninc  32541  disjxpin  32569  finixpnum  37629  cdlemkid3N  40952  cdlemkid4  40953  cdlemk39s  40958  mccllem  45626  clnbgrcl  47835  clnbgrnvtx0  47841
  Copyright terms: Public domain W3C validator