Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbfv | Structured version Visualization version GIF version |
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbfv | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfv2g 6800 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘⦋𝐴 / 𝑥⦌𝑥)) | |
2 | csbvarg 4362 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘⦋𝐴 / 𝑥⦌𝑥) = (𝐹‘𝐴)) |
4 | 1, 3 | eqtrd 2778 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
5 | csbprc 4337 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = ∅) | |
6 | fvprc 6748 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
7 | 5, 6 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⦋csb 3828 ∅c0 4253 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: mptcoe1fsupp 21296 mptcoe1matfsupp 21859 mp2pm2mplem4 21866 chfacfscmulfsupp 21916 chfacfpmmulfsupp 21920 cpmidpmatlem3 21929 cayhamlem4 21945 cayleyhamilton1 21949 logbmpt 25843 nbgrcl 27605 nbgrnvtx0 27609 iuninc 30801 disjxpin 30828 finixpnum 35689 cdlemkid3N 38874 cdlemkid4 38875 cdlemk39s 38880 mccllem 43028 |
Copyright terms: Public domain | W3C validator |