| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv | Structured version Visualization version GIF version | ||
| Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbfv | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv2g 6873 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘⦋𝐴 / 𝑥⦌𝑥)) | |
| 2 | csbvarg 4387 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 2 | fveq2d 6830 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘⦋𝐴 / 𝑥⦌𝑥) = (𝐹‘𝐴)) |
| 4 | 1, 3 | eqtrd 2764 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| 5 | csbprc 4362 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = ∅) | |
| 6 | fvprc 6818 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 7 | 5, 6 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 ∅c0 4286 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: mptcoe1fsupp 22116 mptcoe1matfsupp 22705 mp2pm2mplem4 22712 chfacfscmulfsupp 22762 chfacfpmmulfsupp 22766 cpmidpmatlem3 22775 cayhamlem4 22791 cayleyhamilton1 22795 logbmpt 26714 nbgrcl 29298 nbgrnvtx0 29302 iuninc 32522 disjxpin 32550 finixpnum 37584 cdlemkid3N 40912 cdlemkid4 40913 cdlemk39s 40918 mccllem 45579 clnbgrcl 47806 clnbgrnvtx0 47812 |
| Copyright terms: Public domain | W3C validator |