| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv | Structured version Visualization version GIF version | ||
| Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbfv | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv2g 6874 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘⦋𝐴 / 𝑥⦌𝑥)) | |
| 2 | csbvarg 4383 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 2 | fveq2d 6832 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘⦋𝐴 / 𝑥⦌𝑥) = (𝐹‘𝐴)) |
| 4 | 1, 3 | eqtrd 2768 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| 5 | csbprc 4358 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = ∅) | |
| 6 | fvprc 6820 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 7 | 5, 6 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⦋csb 3846 ∅c0 4282 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: mptcoe1fsupp 22129 mptcoe1matfsupp 22718 mp2pm2mplem4 22725 chfacfscmulfsupp 22775 chfacfpmmulfsupp 22779 cpmidpmatlem3 22788 cayhamlem4 22804 cayleyhamilton1 22808 logbmpt 26726 nbgrcl 29315 nbgrnvtx0 29319 iuninc 32542 disjxpin 32570 finixpnum 37665 cdlemkid3N 41052 cdlemkid4 41053 cdlemk39s 41058 mccllem 45721 clnbgrcl 47945 clnbgrnvtx0 47951 |
| Copyright terms: Public domain | W3C validator |