MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioossico Structured version   Visualization version   GIF version

Theorem ioossico 13422
Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Assertion
Ref Expression
ioossico (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)

Proof of Theorem ioossico
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 13335 . 2 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)})
2 df-ico 13337 . 2 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥 < 𝑏)})
3 xrltle 13135 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
4 idd 24 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
51, 2, 3, 4ixxssixx 13345 1 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2105  wss 3948   class class class wbr 5148  (class class class)co 7412  *cxr 11254   < clt 11255  cle 11256  (,)cioo 13331  [,)cico 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-pre-lttri 11190  ax-pre-lttrn 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-ioo 13335  df-ico 13337
This theorem is referenced by:  elicoelioo  32271  esumdivc  33394  omssubadd  33612  rpsqrtcn  33918  icomnfinre  44576  uzubico  44592  uzubico2  44594  limcresioolb  44670  icocncflimc  44916  fourierdlem41  45175  fourierdlem46  45179  fouriersw  45258  ovolval5lem3  45681  ioosshoi  45696  vonioolem2  45708  amgmwlem  47949
  Copyright terms: Public domain W3C validator