MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioossico Structured version   Visualization version   GIF version

Theorem ioossico 12465
Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Assertion
Ref Expression
ioossico (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)

Proof of Theorem ioossico
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12381 . 2 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)})
2 df-ico 12383 . 2 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥 < 𝑏)})
3 xrltle 12182 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
4 idd 24 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
51, 2, 3, 4ixxssixx 12391 1 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wcel 2155  wss 3732   class class class wbr 4809  (class class class)co 6842  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  [,)cico 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-ioo 12381  df-ico 12383
This theorem is referenced by:  elicoelioo  29924  esumdivc  30527  omssubadd  30744  rpsqrtcn  31054  icomnfinre  40349  uzubico  40365  uzubico2  40367  limcresioolb  40445  icocncflimc  40672  fourierdlem41  40934  fourierdlem46  40938  fouriersw  41017  ovolval5lem3  41440  ioosshoi  41455  vonioolem2  41467  amgmwlem  43152
  Copyright terms: Public domain W3C validator