Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioossico | Structured version Visualization version GIF version |
Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
ioossico | ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 12788 | . 2 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | df-ico 12790 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
3 | xrltle 12588 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | idd 24 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 12798 | 1 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5035 (class class class)co 7155 ℝ*cxr 10717 < clt 10718 ≤ cle 10719 (,)cioo 12784 [,)cico 12786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-ioo 12788 df-ico 12790 |
This theorem is referenced by: elicoelioo 30627 esumdivc 31574 omssubadd 31790 rpsqrtcn 32096 icomnfinre 42583 uzubico 42599 uzubico2 42601 limcresioolb 42679 icocncflimc 42925 fourierdlem41 43184 fourierdlem46 43188 fouriersw 43267 ovolval5lem3 43687 ioosshoi 43702 vonioolem2 43714 amgmwlem 45794 |
Copyright terms: Public domain | W3C validator |