MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooex Structured version   Visualization version   GIF version

Theorem iooex 12580
Description: The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooex (,) ∈ V

Proof of Theorem iooex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12561 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxex 12568 1 (,) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2050  Vcvv 3415   < clt 10476  (,)cioo 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-fv 6198  df-oprab 6982  df-mpo 6983  df-1st 7503  df-2nd 7504  df-xr 10480  df-ioo 12561
This theorem is referenced by:  qtopbaslem  23073  dya2icoseg2  31181  relowlssretop  34086  tgqioo2  41255  smfpimbor1lem1  42505
  Copyright terms: Public domain W3C validator