![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorinv2 | Structured version Visualization version GIF version |
Description: The function πΉ is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) |
Ref | Expression |
---|---|
ioorinv2 | β’ ((π΄(,)π΅) β β β (πΉβ(π΄(,)π΅)) = β¨π΄, π΅β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorebas 13427 | . . 3 β’ (π΄(,)π΅) β ran (,) | |
2 | ioorf.1 | . . . 4 β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) | |
3 | 2 | ioorval 25090 | . . 3 β’ ((π΄(,)π΅) β ran (,) β (πΉβ(π΄(,)π΅)) = if((π΄(,)π΅) = β , β¨0, 0β©, β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β©)) |
4 | 1, 3 | ax-mp 5 | . 2 β’ (πΉβ(π΄(,)π΅)) = if((π΄(,)π΅) = β , β¨0, 0β©, β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β©) |
5 | ifnefalse 4540 | . . 3 β’ ((π΄(,)π΅) β β β if((π΄(,)π΅) = β , β¨0, 0β©, β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β©) = β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β©) | |
6 | n0 4346 | . . . . . . 7 β’ ((π΄(,)π΅) β β β βπ₯ π₯ β (π΄(,)π΅)) | |
7 | eliooxr 13381 | . . . . . . . 8 β’ (π₯ β (π΄(,)π΅) β (π΄ β β* β§ π΅ β β*)) | |
8 | 7 | exlimiv 1933 | . . . . . . 7 β’ (βπ₯ π₯ β (π΄(,)π΅) β (π΄ β β* β§ π΅ β β*)) |
9 | 6, 8 | sylbi 216 | . . . . . 6 β’ ((π΄(,)π΅) β β β (π΄ β β* β§ π΅ β β*)) |
10 | 9 | simpld 495 | . . . . 5 β’ ((π΄(,)π΅) β β β π΄ β β*) |
11 | 9 | simprd 496 | . . . . 5 β’ ((π΄(,)π΅) β β β π΅ β β*) |
12 | id 22 | . . . . 5 β’ ((π΄(,)π΅) β β β (π΄(,)π΅) β β ) | |
13 | df-ioo 13327 | . . . . . 6 β’ (,) = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯ < π§ β§ π§ < π¦)}) | |
14 | idd 24 | . . . . . 6 β’ ((π€ β β* β§ π΅ β β*) β (π€ < π΅ β π€ < π΅)) | |
15 | xrltle 13127 | . . . . . 6 β’ ((π€ β β* β§ π΅ β β*) β (π€ < π΅ β π€ β€ π΅)) | |
16 | idd 24 | . . . . . 6 β’ ((π΄ β β* β§ π€ β β*) β (π΄ < π€ β π΄ < π€)) | |
17 | xrltle 13127 | . . . . . 6 β’ ((π΄ β β* β§ π€ β β*) β (π΄ < π€ β π΄ β€ π€)) | |
18 | 13, 14, 15, 16, 17 | ixxlb 13345 | . . . . 5 β’ ((π΄ β β* β§ π΅ β β* β§ (π΄(,)π΅) β β ) β inf((π΄(,)π΅), β*, < ) = π΄) |
19 | 10, 11, 12, 18 | syl3anc 1371 | . . . 4 β’ ((π΄(,)π΅) β β β inf((π΄(,)π΅), β*, < ) = π΄) |
20 | 13, 14, 15, 16, 17 | ixxub 13344 | . . . . 5 β’ ((π΄ β β* β§ π΅ β β* β§ (π΄(,)π΅) β β ) β sup((π΄(,)π΅), β*, < ) = π΅) |
21 | 10, 11, 12, 20 | syl3anc 1371 | . . . 4 β’ ((π΄(,)π΅) β β β sup((π΄(,)π΅), β*, < ) = π΅) |
22 | 19, 21 | opeq12d 4881 | . . 3 β’ ((π΄(,)π΅) β β β β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β© = β¨π΄, π΅β©) |
23 | 5, 22 | eqtrd 2772 | . 2 β’ ((π΄(,)π΅) β β β if((π΄(,)π΅) = β , β¨0, 0β©, β¨inf((π΄(,)π΅), β*, < ), sup((π΄(,)π΅), β*, < )β©) = β¨π΄, π΅β©) |
24 | 4, 23 | eqtrid 2784 | 1 β’ ((π΄(,)π΅) β β β (πΉβ(π΄(,)π΅)) = β¨π΄, π΅β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 βwex 1781 β wcel 2106 β wne 2940 β c0 4322 ifcif 4528 β¨cop 4634 class class class wbr 5148 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7408 supcsup 9434 infcinf 9435 0cc0 11109 β*cxr 11246 < clt 11247 (,)cioo 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-ioo 13327 |
This theorem is referenced by: ioorinv 25092 ioorcl 25093 |
Copyright terms: Public domain | W3C validator |