MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv2 Structured version   Visualization version   GIF version

Theorem ioorinv2 25533
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv2 ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = ⟨𝐴, 𝐵⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorebas 13473 . . 3 (𝐴(,)𝐵) ∈ ran (,)
2 ioorf.1 . . . 4 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
32ioorval 25532 . . 3 ((𝐴(,)𝐵) ∈ ran (,) → (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, ⟨0, 0⟩, ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩))
41, 3ax-mp 5 . 2 (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, ⟨0, 0⟩, ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩)
5 ifnefalse 4517 . . 3 ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, ⟨0, 0⟩, ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩) = ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩)
6 n0 4333 . . . . . . 7 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
7 eliooxr 13426 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
87exlimiv 1930 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
96, 8sylbi 217 . . . . . 6 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 494 . . . . 5 ((𝐴(,)𝐵) ≠ ∅ → 𝐴 ∈ ℝ*)
119simprd 495 . . . . 5 ((𝐴(,)𝐵) ≠ ∅ → 𝐵 ∈ ℝ*)
12 id 22 . . . . 5 ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ≠ ∅)
13 df-ioo 13371 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
14 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
15 xrltle 13170 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
16 idd 24 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
17 xrltle 13170 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
1813, 14, 15, 16, 17ixxlb 13389 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
1910, 11, 12, 18syl3anc 1373 . . . 4 ((𝐴(,)𝐵) ≠ ∅ → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
2013, 14, 15, 16, 17ixxub 13388 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
2110, 11, 12, 20syl3anc 1373 . . . 4 ((𝐴(,)𝐵) ≠ ∅ → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
2219, 21opeq12d 4862 . . 3 ((𝐴(,)𝐵) ≠ ∅ → ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩ = ⟨𝐴, 𝐵⟩)
235, 22eqtrd 2771 . 2 ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, ⟨0, 0⟩, ⟨inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )⟩) = ⟨𝐴, 𝐵⟩)
244, 23eqtrid 2783 1 ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = ⟨𝐴, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  c0 4313  ifcif 4505  cop 4612   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  supcsup 9457  infcinf 9458  0cc0 11134  *cxr 11273   < clt 11274  (,)cioo 13367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-ioo 13371
This theorem is referenced by:  ioorinv  25534  ioorcl  25535
  Copyright terms: Public domain W3C validator