![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorinv2 | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv2 | ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorebas 13482 | . . 3 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
2 | ioorf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
3 | 2 | ioorval 25594 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ ran (,) → (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) |
5 | ifnefalse 4545 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) | |
6 | n0 4349 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) | |
7 | eliooxr 13436 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
8 | 7 | exlimiv 1926 | . . . . . . 7 ⊢ (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 6, 8 | sylbi 216 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 493 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐴 ∈ ℝ*) |
11 | 9 | simprd 494 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐵 ∈ ℝ*) |
12 | id 22 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ≠ ∅) | |
13 | df-ioo 13382 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
14 | idd 24 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
15 | xrltle 13182 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
16 | idd 24 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 < 𝑤)) | |
17 | xrltle 13182 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
18 | 13, 14, 15, 16, 17 | ixxlb 13400 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
19 | 10, 11, 12, 18 | syl3anc 1368 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
20 | 13, 14, 15, 16, 17 | ixxub 13399 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
21 | 10, 11, 12, 20 | syl3anc 1368 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
22 | 19, 21 | opeq12d 4887 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉 = 〈𝐴, 𝐵〉) |
23 | 5, 22 | eqtrd 2766 | . 2 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈𝐴, 𝐵〉) |
24 | 4, 23 | eqtrid 2778 | 1 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∅c0 4325 ifcif 4533 〈cop 4639 class class class wbr 5153 ↦ cmpt 5236 ran crn 5683 ‘cfv 6554 (class class class)co 7424 supcsup 9483 infcinf 9484 0cc0 11158 ℝ*cxr 11297 < clt 11298 (,)cioo 13378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-ioo 13382 |
This theorem is referenced by: ioorinv 25596 ioorcl 25597 |
Copyright terms: Public domain | W3C validator |