| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorinv2 | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| Ref | Expression |
|---|---|
| ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
| Ref | Expression |
|---|---|
| ioorinv2 | ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorebas 13419 | . . 3 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 2 | ioorf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
| 3 | 2 | ioorval 25482 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ ran (,) → (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) |
| 5 | ifnefalse 4503 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) | |
| 6 | n0 4319 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) | |
| 7 | eliooxr 13372 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
| 8 | 7 | exlimiv 1930 | . . . . . . 7 ⊢ (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 9 | 6, 8 | sylbi 217 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 10 | 9 | simpld 494 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐴 ∈ ℝ*) |
| 11 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐵 ∈ ℝ*) |
| 12 | id 22 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ≠ ∅) | |
| 13 | df-ioo 13317 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 14 | idd 24 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
| 15 | xrltle 13116 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 16 | idd 24 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 < 𝑤)) | |
| 17 | xrltle 13116 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
| 18 | 13, 14, 15, 16, 17 | ixxlb 13335 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
| 19 | 10, 11, 12, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
| 20 | 13, 14, 15, 16, 17 | ixxub 13334 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
| 21 | 10, 11, 12, 20 | syl3anc 1373 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
| 22 | 19, 21 | opeq12d 4848 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉 = 〈𝐴, 𝐵〉) |
| 23 | 5, 22 | eqtrd 2765 | . 2 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈𝐴, 𝐵〉) |
| 24 | 4, 23 | eqtrid 2777 | 1 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ifcif 4491 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 supcsup 9398 infcinf 9399 0cc0 11075 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 |
| This theorem is referenced by: ioorinv 25484 ioorcl 25485 |
| Copyright terms: Public domain | W3C validator |