Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioorinv2 | Structured version Visualization version GIF version |
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorinv2 | ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorebas 13288 | . . 3 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
2 | ioorf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
3 | 2 | ioorval 24843 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ ran (,) → (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) |
5 | ifnefalse 4489 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) | |
6 | n0 4297 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) | |
7 | eliooxr 13242 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
8 | 7 | exlimiv 1933 | . . . . . . 7 ⊢ (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 6, 8 | sylbi 216 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 496 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐴 ∈ ℝ*) |
11 | 9 | simprd 497 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐵 ∈ ℝ*) |
12 | id 22 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ≠ ∅) | |
13 | df-ioo 13188 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
14 | idd 24 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
15 | xrltle 12988 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
16 | idd 24 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 < 𝑤)) | |
17 | xrltle 12988 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
18 | 13, 14, 15, 16, 17 | ixxlb 13206 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
19 | 10, 11, 12, 18 | syl3anc 1371 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
20 | 13, 14, 15, 16, 17 | ixxub 13205 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
21 | 10, 11, 12, 20 | syl3anc 1371 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
22 | 19, 21 | opeq12d 4829 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉 = 〈𝐴, 𝐵〉) |
23 | 5, 22 | eqtrd 2777 | . 2 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈𝐴, 𝐵〉) |
24 | 4, 23 | eqtrid 2789 | 1 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∅c0 4273 ifcif 4477 〈cop 4583 class class class wbr 5096 ↦ cmpt 5179 ran crn 5625 ‘cfv 6483 (class class class)co 7341 supcsup 9301 infcinf 9302 0cc0 10976 ℝ*cxr 11113 < clt 11114 (,)cioo 13184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-q 12794 df-ioo 13188 |
This theorem is referenced by: ioorinv 24845 ioorcl 24846 |
Copyright terms: Public domain | W3C validator |