| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorinv2 | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| Ref | Expression |
|---|---|
| ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
| Ref | Expression |
|---|---|
| ioorinv2 | ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorebas 13491 | . . 3 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 2 | ioorf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
| 3 | 2 | ioorval 25609 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ ran (,) → (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐹‘(𝐴(,)𝐵)) = if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) |
| 5 | ifnefalse 4537 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) | |
| 6 | n0 4353 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) | |
| 7 | eliooxr 13445 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
| 8 | 7 | exlimiv 1930 | . . . . . . 7 ⊢ (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 9 | 6, 8 | sylbi 217 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 10 | 9 | simpld 494 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐴 ∈ ℝ*) |
| 11 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 𝐵 ∈ ℝ*) |
| 12 | id 22 | . . . . 5 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ≠ ∅) | |
| 13 | df-ioo 13391 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 14 | idd 24 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
| 15 | xrltle 13191 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 16 | idd 24 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 < 𝑤)) | |
| 17 | xrltle 13191 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
| 18 | 13, 14, 15, 16, 17 | ixxlb 13409 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
| 19 | 10, 11, 12, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
| 20 | 13, 14, 15, 16, 17 | ixxub 13408 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
| 21 | 10, 11, 12, 20 | syl3anc 1373 | . . . 4 ⊢ ((𝐴(,)𝐵) ≠ ∅ → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
| 22 | 19, 21 | opeq12d 4881 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉 = 〈𝐴, 𝐵〉) |
| 23 | 5, 22 | eqtrd 2777 | . 2 ⊢ ((𝐴(,)𝐵) ≠ ∅ → if((𝐴(,)𝐵) = ∅, 〈0, 0〉, 〈inf((𝐴(,)𝐵), ℝ*, < ), sup((𝐴(,)𝐵), ℝ*, < )〉) = 〈𝐴, 𝐵〉) |
| 24 | 4, 23 | eqtrid 2789 | 1 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 ifcif 4525 〈cop 4632 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 supcsup 9480 infcinf 9481 0cc0 11155 ℝ*cxr 11294 < clt 11295 (,)cioo 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-ioo 13391 |
| This theorem is referenced by: ioorinv 25611 ioorcl 25612 |
| Copyright terms: Public domain | W3C validator |