| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioossioo | Structured version Visualization version GIF version | ||
| Description: Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
| Ref | Expression |
|---|---|
| ioossioo | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo 13270 | . 2 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | xrlelttr 13076 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑤) → 𝐴 < 𝑤)) | |
| 3 | xrltletr 13077 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 < 𝐵)) | |
| 4 | 1, 1, 2, 3 | ixxss12 13286 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 (,)cioo 13266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 |
| This theorem is referenced by: difioo 32738 tpr2rico 33878 signsply0 34518 ftc1cnnclem 37670 ftc1anclem7 37678 ftc1anclem8 37679 ftc1anc 37680 ftc2nc 37681 ioossioobi 45499 dvbdfbdioolem1 45910 fourierdlem20 46109 fourierdlem72 46160 fourierdlem79 46167 fourierdlem103 46191 fourierdlem104 46192 ioorrnopnxrlem 46288 iooii 48890 |
| Copyright terms: Public domain | W3C validator |