Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioossioo | Structured version Visualization version GIF version |
Description: Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
Ref | Expression |
---|---|
ioossioo | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 13153 | . 2 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | xrlelttr 12960 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑤) → 𝐴 < 𝑤)) | |
3 | xrltletr 12961 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 < 𝐵)) | |
4 | 1, 1, 2, 3 | ixxss12 13169 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3896 class class class wbr 5085 (class class class)co 7313 ℝ*cxr 11078 < clt 11079 ≤ cle 11080 (,)cioo 13149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-pre-lttri 11015 ax-pre-lttrn 11016 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-po 5519 df-so 5520 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-1st 7874 df-2nd 7875 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-ioo 13153 |
This theorem is referenced by: difioo 31211 tpr2rico 31968 signsply0 32636 ftc1cnnclem 35908 ftc1anclem7 35916 ftc1anclem8 35917 ftc1anc 35918 ftc2nc 35919 ioossioobi 43299 dvbdfbdioolem1 43713 fourierdlem20 43912 fourierdlem72 43963 fourierdlem79 43970 fourierdlem103 43994 fourierdlem104 43995 ioorrnopnxrlem 44091 iooii 46470 |
Copyright terms: Public domain | W3C validator |