MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioo1 Structured version   Visualization version   GIF version

Theorem elioo1 13000
Description: Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioo1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem elioo1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12964 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21elixx1 12969 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2111   class class class wbr 5068  (class class class)co 7232  *cxr 10891   < clt 10892  (,)cioo 12960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-iota 6356  df-fun 6400  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-xr 10896  df-ioo 12964
This theorem is referenced by:  elioo5  13017  difreicc  13097  tgqioo  23721  xrge0tsms  23755  ovolfioo  24388  elicoelioo  30843  xrge0tsmsd  31060  tpr2rico  31600  ivthALT  34287  iooelexlt  35297  relowlssretop  35298  acos1half  39922
  Copyright terms: Public domain W3C validator