Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioossioobi Structured version   Visualization version   GIF version

Theorem ioossioobi 45631
Description: Biconditional form of ioossioo 13351. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioossioobi.a (𝜑𝐴 ∈ ℝ*)
ioossioobi.b (𝜑𝐵 ∈ ℝ*)
ioossioobi.c (𝜑𝐶 ∈ ℝ*)
ioossioobi.d (𝜑𝐷 ∈ ℝ*)
ioossioobi.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ioossioobi (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))

Proof of Theorem ioossioobi
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
2 df-ioo 13259 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32ixxssxr 13267 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ*
4 infxrss 13249 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
51, 3, 4sylancl 586 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
6 ioossioobi.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ioossioobi.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
10 ioossioobi.cltd . . . . . . . 8 (𝜑𝐶 < 𝐷)
11 ioossioobi.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
12 ioossioobi.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ*)
13 ioon0 13281 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1411, 12, 13syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1510, 14mpbird 257 . . . . . . 7 (𝜑 → (𝐶(,)𝐷) ≠ ∅)
1615adantr 480 . . . . . 6 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ≠ ∅)
17 ssn0 4355 . . . . . 6 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐶(,)𝐷) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
181, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅)
19 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
20 xrltle 13058 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
21 idd 24 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
22 xrltle 13058 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
232, 19, 20, 21, 22ixxlb 13277 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
247, 9, 18, 23syl3anc 1373 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
2511adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ*)
2612adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ*)
27 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤 < 𝐷))
28 xrltle 13058 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤𝐷))
29 idd 24 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶 < 𝑤))
30 xrltle 13058 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶𝑤))
312, 27, 28, 29, 30ixxlb 13277 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
3225, 26, 16, 31syl3anc 1373 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
335, 24, 323brtr3d 5126 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴𝐶)
34 supxrss 13241 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
351, 3, 34sylancl 586 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
362, 27, 28, 29, 30ixxub 13276 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
3725, 26, 16, 36syl3anc 1373 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
382, 19, 20, 21, 22ixxub 13276 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
397, 9, 18, 38syl3anc 1373 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
4035, 37, 393brtr3d 5126 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷𝐵)
4133, 40jca 511 . 2 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴𝐶𝐷𝐵))
426adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐵 ∈ ℝ*)
44 simprl 770 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴𝐶)
45 simprr 772 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐷𝐵)
46 ioossioo 13351 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4742, 43, 44, 45, 46syl22anc 838 . 2 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4841, 47impbida 800 1 (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wss 3899  c0 4284   class class class wbr 5095  (class class class)co 7355  supcsup 9334  infcinf 9335  *cxr 11155   < clt 11156  cle 11157  (,)cioo 13255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-ioo 13259
This theorem is referenced by:  fourierdlem50  46268
  Copyright terms: Public domain W3C validator