Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioossioobi Structured version   Visualization version   GIF version

Theorem ioossioobi 44220
Description: Biconditional form of ioossioo 13417. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioossioobi.a (𝜑𝐴 ∈ ℝ*)
ioossioobi.b (𝜑𝐵 ∈ ℝ*)
ioossioobi.c (𝜑𝐶 ∈ ℝ*)
ioossioobi.d (𝜑𝐷 ∈ ℝ*)
ioossioobi.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ioossioobi (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))

Proof of Theorem ioossioobi
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
2 df-ioo 13327 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32ixxssxr 13335 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ*
4 infxrss 13317 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
51, 3, 4sylancl 586 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
6 ioossioobi.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ioossioobi.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
10 ioossioobi.cltd . . . . . . . 8 (𝜑𝐶 < 𝐷)
11 ioossioobi.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
12 ioossioobi.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ*)
13 ioon0 13349 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1411, 12, 13syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1510, 14mpbird 256 . . . . . . 7 (𝜑 → (𝐶(,)𝐷) ≠ ∅)
1615adantr 481 . . . . . 6 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ≠ ∅)
17 ssn0 4400 . . . . . 6 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐶(,)𝐷) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
181, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅)
19 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
20 xrltle 13127 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
21 idd 24 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
22 xrltle 13127 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
232, 19, 20, 21, 22ixxlb 13345 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
247, 9, 18, 23syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
2511adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ*)
2612adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ*)
27 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤 < 𝐷))
28 xrltle 13127 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤𝐷))
29 idd 24 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶 < 𝑤))
30 xrltle 13127 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶𝑤))
312, 27, 28, 29, 30ixxlb 13345 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
3225, 26, 16, 31syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
335, 24, 323brtr3d 5179 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴𝐶)
34 supxrss 13310 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
351, 3, 34sylancl 586 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
362, 27, 28, 29, 30ixxub 13344 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
3725, 26, 16, 36syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
382, 19, 20, 21, 22ixxub 13344 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
397, 9, 18, 38syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
4035, 37, 393brtr3d 5179 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷𝐵)
4133, 40jca 512 . 2 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴𝐶𝐷𝐵))
426adantr 481 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴 ∈ ℝ*)
438adantr 481 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐵 ∈ ℝ*)
44 simprl 769 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴𝐶)
45 simprr 771 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐷𝐵)
46 ioossioo 13417 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4742, 43, 44, 45, 46syl22anc 837 . 2 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4841, 47impbida 799 1 (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wss 3948  c0 4322   class class class wbr 5148  (class class class)co 7408  supcsup 9434  infcinf 9435  *cxr 11246   < clt 11247  cle 11248  (,)cioo 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-ioo 13327
This theorem is referenced by:  fourierdlem50  44862
  Copyright terms: Public domain W3C validator