Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
2 | | df-ioo 12939 |
. . . . . 6
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
3 | 2 | ixxssxr 12947 |
. . . . 5
⊢ (𝐴(,)𝐵) ⊆
ℝ* |
4 | | infxrss 12929 |
. . . . 5
⊢ (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) →
inf((𝐴(,)𝐵), ℝ*, < ) ≤
inf((𝐶(,)𝐷), ℝ*, <
)) |
5 | 1, 3, 4 | sylancl 589 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) ≤
inf((𝐶(,)𝐷), ℝ*, <
)) |
6 | | ioossioobi.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
7 | 6 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
8 | | ioossioobi.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
9 | 8 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
10 | | ioossioobi.cltd |
. . . . . . . 8
⊢ (𝜑 → 𝐶 < 𝐷) |
11 | | ioossioobi.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
12 | | ioossioobi.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
13 | | ioon0 12961 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷)) |
14 | 11, 12, 13 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷)) |
15 | 10, 14 | mpbird 260 |
. . . . . . 7
⊢ (𝜑 → (𝐶(,)𝐷) ≠ ∅) |
16 | 15 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ≠ ∅) |
17 | | ssn0 4315 |
. . . . . 6
⊢ (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐶(,)𝐷) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅) |
18 | 1, 16, 17 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅) |
19 | | idd 24 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) |
20 | | xrltle 12739 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) |
21 | | idd 24 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐴 < 𝑤 → 𝐴 < 𝑤)) |
22 | | xrltle 12739 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) |
23 | 2, 19, 20, 21, 22 | ixxlb 12957 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
24 | 7, 9, 18, 23 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴) |
25 | 11 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐶 ∈
ℝ*) |
26 | 12 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷 ∈
ℝ*) |
27 | | idd 24 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) → (𝑤 < 𝐷 → 𝑤 < 𝐷)) |
28 | | xrltle 12739 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) → (𝑤 < 𝐷 → 𝑤 ≤ 𝐷)) |
29 | | idd 24 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐶 < 𝑤 → 𝐶 < 𝑤)) |
30 | | xrltle 12739 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐶 < 𝑤 → 𝐶 ≤ 𝑤)) |
31 | 2, 27, 28, 29, 30 | ixxlb 12957 |
. . . . 5
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶) |
32 | 25, 26, 16, 31 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶) |
33 | 5, 24, 32 | 3brtr3d 5084 |
. . 3
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐶) |
34 | | supxrss 12922 |
. . . . 5
⊢ (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) →
sup((𝐶(,)𝐷), ℝ*, < ) ≤
sup((𝐴(,)𝐵), ℝ*, <
)) |
35 | 1, 3, 34 | sylancl 589 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) ≤
sup((𝐴(,)𝐵), ℝ*, <
)) |
36 | 2, 27, 28, 29, 30 | ixxub 12956 |
. . . . 5
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷) |
37 | 25, 26, 16, 36 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷) |
38 | 2, 19, 20, 21, 22 | ixxub 12956 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
39 | 7, 9, 18, 38 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵) |
40 | 35, 37, 39 | 3brtr3d 5084 |
. . 3
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷 ≤ 𝐵) |
41 | 33, 40 | jca 515 |
. 2
⊢ ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) |
42 | 6 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → 𝐴 ∈
ℝ*) |
43 | 8 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
44 | | simprl 771 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → 𝐴 ≤ 𝐶) |
45 | | simprr 773 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → 𝐷 ≤ 𝐵) |
46 | | ioossioo 13029 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
47 | 42, 43, 44, 45, 46 | syl22anc 839 |
. 2
⊢ ((𝜑 ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
48 | 41, 47 | impbida 801 |
1
⊢ (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵))) |