MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   GIF version

Theorem dchrisum0lem2a 26654
Description: Lemma for dchrisum0 26657. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
Assertion
Ref Expression
dchrisum0lem2a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13682 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpl 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝜑)
3 elfznn 13274 . . . . 5 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
4 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4016 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
10 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
119, 10sselid 3920 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1211eldifad 3900 . . . . . . . 8 (𝜑𝑋𝐷)
1312adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
14 nnz 12331 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
164, 5, 6, 7, 13, 15dchrzrhcl 26382 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
17 nnrp 12730 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
1817adantl 482 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1918rpsqrtcld 15112 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
2019rpcnd 12763 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
2119rpne0d 12766 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
2216, 20, 21divcld 11740 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
232, 3, 22syl2an 596 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
241, 23fsumcl 15434 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
25 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
26 rlimcl 15201 . . . . 5 (𝐻𝑟 𝑈𝑈 ∈ ℂ)
2725, 26syl 17 . . . 4 (𝜑𝑈 ∈ ℂ)
2827adantr 481 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑈 ∈ ℂ)
29 0xr 11011 . . . . . . . . 9 0 ∈ ℝ*
30 0lt1 11486 . . . . . . . . 9 0 < 1
31 df-ioo 13072 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32 df-ico 13074 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
33 xrltletr 12880 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
3431, 32, 33ixxss1 13086 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
3529, 30, 34mp2an 689 . . . . . . . 8 (1[,)+∞) ⊆ (0(,)+∞)
36 ioorp 13146 . . . . . . . 8 (0(,)+∞) = ℝ+
3735, 36sseqtri 3958 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
38 resmpt 5940 . . . . . . 7 ((1[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
3937, 38ax-mp 5 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4037sseli 3918 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
413adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
42 2fveq3 6773 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
43 fveq2 6768 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
4442, 43oveq12d 7287 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
45 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
46 ovex 7302 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
4744, 45, 46fvmpt3i 6874 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4841, 47syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4940, 48sylanl2 678 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
50 1re 10964 . . . . . . . . . . . 12 1 ∈ ℝ
51 elicopnf 13166 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
5250, 51ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
53 flge1nn 13530 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
5452, 53sylbi 216 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ)
5554adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ ℕ)
56 nnuz 12610 . . . . . . . . 9 ℕ = (ℤ‘1)
5755, 56eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘1))
5840, 23sylanl2 678 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
5949, 57, 58fsumser 15431 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6059mpteq2dva 5175 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
6139, 60eqtrid 2790 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
62 fveq2 6768 . . . . . . 7 (𝑚 = (⌊‘𝑥) → (seq1( + , 𝐹)‘𝑚) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
63 rpssre 12726 . . . . . . . . 9 + ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
6537, 64sstrid 3933 . . . . . . 7 (𝜑 → (1[,)+∞) ⊆ ℝ)
66 1zzd 12340 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
6744cbvmptv 5188 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6845, 67eqtri 2766 . . . . . . . . . . . 12 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6922, 68fmptd 6982 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℂ)
7069ffvelrnda 6955 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
7156, 66, 70serf 13740 . . . . . . . . 9 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
7271feqmptd 6831 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) = (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)))
73 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
7472, 73eqbrtrrd 5099 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)) ⇝ 𝑆)
7571ffvelrnda 6955 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (seq1( + , 𝐹)‘𝑚) ∈ ℂ)
7652simprbi 497 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7776adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7856, 62, 65, 66, 74, 75, 77climrlim2 15245 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆)
79 rlimo1 15315 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8078, 79syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8161, 80eqeltrd 2839 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1))
8224fmpttd 6983 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))):ℝ+⟶ℂ)
83 1red 10965 . . . . 5 (𝜑 → 1 ∈ ℝ)
8482, 64, 83o1resb 15264 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
8581, 84mpbird 256 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1))
86 o1const 15318 . . . 4 ((ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ) → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8763, 27, 86sylancr 587 . . 3 (𝜑 → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8824, 28, 85, 87o1mul2 15323 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1))
89 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
90 2z 12341 . . . . . . . . 9 2 ∈ ℤ
91 rpexpcl 13790 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
9289, 90, 91sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
933nnrpd 12759 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
94 rpdivcl 12744 . . . . . . . 8 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
9592, 93, 94syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
96 dchrisum0lem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
9796divsqrsumf 26119 . . . . . . . 8 𝐻:ℝ+⟶ℝ
9897ffvelrni 6954 . . . . . . 7 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
9995, 98syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
10099recnd 10992 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℂ)
10123, 100mulcld 10984 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
1021, 101fsumcl 15434 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
10324, 28mulcld 10984 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
10425ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝐻𝑟 𝑈)
105104, 26syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑈 ∈ ℂ)
10623, 105mulcld 10984 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
1071, 101, 106fsumsub 15489 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
10823, 100, 105subdid 11420 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
109108sumeq2dv 15404 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
1101, 28, 23fsummulc1 15486 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))
111110oveq2d 7285 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
112107, 109, 1113eqtr4d 2788 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
113112mpteq2dva 5175 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))))
114100, 105subcld 11321 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈) ∈ ℂ)
11523, 114mulcld 10984 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
1161, 115fsumcl 15434 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
117116abscld 15137 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
118115abscld 15137 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
1191, 118fsumrecl 15435 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
120 1red 10965 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
1211, 115fsumabs 15502 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
122 rprege0 12734 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
123122adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
124123simpld 495 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
125 reflcl 13505 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
127126, 89rerpdivcld 12792 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
128 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
129128rprecred 12772 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
13023abscld 15137 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
13193rpsqrtcld 15112 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘𝑥)) → (√‘𝑚) ∈ ℝ+)
132131adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
133132rprecred 12772 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℝ)
134114abscld 15137 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℝ)
135132, 128rpdivcld 12778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ+)
13663, 135sselid 3920 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ)
13723absge0d 15145 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
138114absge0d 15145 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)))
1392, 3, 16syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
140132rpcnd 12763 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
141132rpne0d 12766 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
142139, 140, 141absdivd 15156 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))))
143132rprege0d 12768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)))
144 absid 14997 . . . . . . . . . . . . . . . 16 (((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)) → (abs‘(√‘𝑚)) = (√‘𝑚))
145143, 144syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑚)) = (√‘𝑚))
146145oveq2d 7285 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
147142, 146eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
148139abscld 15137 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ∈ ℝ)
149 1red 10965 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
150 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑍) = (Base‘𝑍)
15112ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
152 rpvmasum.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
153152nnnn0d 12282 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
1545, 150, 7znzrhfo 20744 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
155 fof 6682 . . . . . . . . . . . . . . . . . 18 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:ℤ⟶(Base‘𝑍))
157156adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
158 elfzelz 13245 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
159 ffvelrn 6953 . . . . . . . . . . . . . . . 16 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
160157, 158, 159syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐿𝑚) ∈ (Base‘𝑍))
1614, 6, 5, 150, 151, 160dchrabs2 26399 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ≤ 1)
162148, 149, 132, 161lediv1dd 12819 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)) ≤ (1 / (√‘𝑚)))
163147, 162eqbrtrd 5097 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ (1 / (√‘𝑚)))
16496, 104divsqrtsum2 26121 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ ((𝑥↑2) / 𝑚) ∈ ℝ+) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16595, 164mpdan 684 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16692rprege0d 12768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
167 sqrtdiv 14966 . . . . . . . . . . . . . . . . 17 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
168166, 93, 167syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
169122ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
170 sqrtsq 14970 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
171169, 170syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
172171oveq1d 7284 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
173168, 172eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
174173oveq2d 7285 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = (1 / (𝑥 / (√‘𝑚))))
175 rpcnne0 12737 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
176175ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177132rpcnne0d 12770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
178 recdiv 11670 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
179176, 177, 178syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
180174, 179eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = ((√‘𝑚) / 𝑥))
181165, 180breqtrd 5101 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ ((√‘𝑚) / 𝑥))
182130, 133, 134, 136, 137, 138, 163, 181lemul12ad 11906 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
18323, 114absmuld 15155 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
184 1cnd 10959 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
185 dmdcan 11674 . . . . . . . . . . . . 13 ((((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
186177, 176, 184, 185syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
187135rpcnd 12763 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℂ)
188 reccl 11629 . . . . . . . . . . . . . 14 (((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) → (1 / (√‘𝑚)) ∈ ℂ)
189177, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℂ)
190187, 189mulcomd 10985 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
191186, 190eqtr3d 2780 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
192182, 183, 1913brtr4d 5107 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ (1 / 𝑥))
1931, 118, 129, 192fsumle 15500 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
194 flge0nn0 13529 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
195 hashfz1 14049 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
196123, 194, 1953syl 18 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
197196oveq1d 7284 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
19889rpreccld 12771 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
199198rpcnd 12763 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
200 fsumconst 15491 . . . . . . . . . . 11 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
2011, 199, 200syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
202126recnd 10992 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℂ)
203175adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
204203simpld 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
205203simprd 496 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
206202, 204, 205divrecd 11743 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
207197, 201, 2063eqtr4d 2788 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
208193, 207breqtrd 5101 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((⌊‘𝑥) / 𝑥))
209 flle 13508 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
210124, 209syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
211124recnd 10992 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
212211mulid1d 10981 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
213210, 212breqtrrd 5103 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ (𝑥 · 1))
214 rpregt0 12733 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
215214adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
216 ledivmul 11840 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
217126, 120, 215, 216syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
218213, 217mpbird 256 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ≤ 1)
219119, 127, 120, 208, 218letrd 11121 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
220117, 119, 120, 121, 219letrd 11121 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
221220adantrr 714 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
22264, 116, 83, 83, 221elo1d 15234 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ 𝑂(1))
223113, 222eqeltrrd 2840 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))) ∈ 𝑂(1))
224102, 103, 223o1dif 15328 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1)))
22588, 224mpbird 256 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3885  wss 3888  {csn 4563   class class class wbr 5075  cmpt 5158  cres 5588  wf 6424  ontowfo 6426  cfv 6428  (class class class)co 7269  Fincfn 8722  cc 10858  cr 10859  0cc0 10860  1c1 10861   + caddc 10863   · cmul 10865  +∞cpnf 10995  *cxr 10997   < clt 10998  cle 10999  cmin 11194   / cdiv 11621  cn 11962  2c2 12017  0cn0 12222  cz 12308  cuz 12571  +crp 12719  (,)cioo 13068  [,)cico 13070  ...cfz 13228  cfl 13499  seqcseq 13710  cexp 13771  chash 14033  csqrt 14933  abscabs 14934  cli 15182  𝑟 crli 15183  𝑂(1)co1 15184  Σcsu 15386  Basecbs 16901  0gc0g 17139  ℤRHomczrh 20690  ℤ/nczn 20693  DChrcdchr 26369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938  ax-addf 10939  ax-mulf 10940
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-tpos 8031  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-oadd 8290  df-omul 8291  df-er 8487  df-ec 8489  df-qs 8493  df-map 8606  df-pm 8607  df-ixp 8675  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-fsupp 9118  df-fi 9159  df-sup 9190  df-inf 9191  df-oi 9258  df-card 9686  df-acn 9689  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-4 12027  df-5 12028  df-6 12029  df-7 12030  df-8 12031  df-9 12032  df-n0 12223  df-z 12309  df-dec 12427  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-ioo 13072  df-ioc 13073  df-ico 13074  df-icc 13075  df-fz 13229  df-fzo 13372  df-fl 13501  df-mod 13579  df-seq 13711  df-exp 13772  df-fac 13977  df-bc 14006  df-hash 14034  df-shft 14767  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-limsup 15169  df-clim 15186  df-rlim 15187  df-o1 15188  df-lo1 15189  df-sum 15387  df-ef 15766  df-sin 15768  df-cos 15769  df-pi 15771  df-dvds 15953  df-struct 16837  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-ress 16931  df-plusg 16964  df-mulr 16965  df-starv 16966  df-sca 16967  df-vsca 16968  df-ip 16969  df-tset 16970  df-ple 16971  df-ds 16973  df-unif 16974  df-hom 16975  df-cco 16976  df-rest 17122  df-topn 17123  df-0g 17141  df-gsum 17142  df-topgen 17143  df-pt 17144  df-prds 17147  df-xrs 17202  df-qtop 17207  df-imas 17208  df-qus 17209  df-xps 17210  df-mre 17284  df-mrc 17285  df-acs 17287  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-mhm 18419  df-submnd 18420  df-grp 18569  df-minusg 18570  df-sbg 18571  df-mulg 18690  df-subg 18741  df-nsg 18742  df-eqg 18743  df-ghm 18821  df-cntz 18912  df-od 19125  df-cmn 19377  df-abl 19378  df-mgp 19710  df-ur 19727  df-ring 19774  df-cring 19775  df-oppr 19851  df-dvdsr 19872  df-unit 19873  df-invr 19903  df-dvr 19914  df-rnghom 19948  df-drng 19982  df-subrg 20011  df-lmod 20114  df-lss 20183  df-lsp 20223  df-sra 20423  df-rgmod 20424  df-lidl 20425  df-rsp 20426  df-2idl 20492  df-psmet 20578  df-xmet 20579  df-met 20580  df-bl 20581  df-mopn 20582  df-fbas 20583  df-fg 20584  df-cnfld 20587  df-zring 20660  df-zrh 20694  df-zn 20697  df-top 22032  df-topon 22049  df-topsp 22071  df-bases 22085  df-cld 22159  df-ntr 22160  df-cls 22161  df-nei 22238  df-lp 22276  df-perf 22277  df-cn 22367  df-cnp 22368  df-haus 22455  df-cmp 22527  df-tx 22702  df-hmeo 22895  df-fil 22986  df-fm 23078  df-flim 23079  df-flf 23080  df-xms 23462  df-ms 23463  df-tms 23464  df-cncf 24030  df-limc 25019  df-dv 25020  df-log 25701  df-cxp 25702  df-dchr 26370
This theorem is referenced by:  dchrisum0lem2  26655
  Copyright terms: Public domain W3C validator