MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   GIF version

Theorem dchrisum0lem2a 27579
Description: Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
Assertion
Ref Expression
dchrisum0lem2a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝜑)
3 elfznn 13613 . . . . 5 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
4 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4105 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
10 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
119, 10sselid 4006 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1211eldifad 3988 . . . . . . . 8 (𝜑𝑋𝐷)
1312adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
14 nnz 12660 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
164, 5, 6, 7, 13, 15dchrzrhcl 27307 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
17 nnrp 13068 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
1817adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1918rpsqrtcld 15460 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
2019rpcnd 13101 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
2119rpne0d 13104 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
2216, 20, 21divcld 12070 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
232, 3, 22syl2an 595 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
241, 23fsumcl 15781 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
25 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
26 rlimcl 15549 . . . . 5 (𝐻𝑟 𝑈𝑈 ∈ ℂ)
2725, 26syl 17 . . . 4 (𝜑𝑈 ∈ ℂ)
2827adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑈 ∈ ℂ)
29 0xr 11337 . . . . . . . . 9 0 ∈ ℝ*
30 0lt1 11812 . . . . . . . . 9 0 < 1
31 df-ioo 13411 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32 df-ico 13413 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
33 xrltletr 13219 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
3431, 32, 33ixxss1 13425 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
3529, 30, 34mp2an 691 . . . . . . . 8 (1[,)+∞) ⊆ (0(,)+∞)
36 ioorp 13485 . . . . . . . 8 (0(,)+∞) = ℝ+
3735, 36sseqtri 4045 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
38 resmpt 6066 . . . . . . 7 ((1[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
3937, 38ax-mp 5 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4037sseli 4004 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
413adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
42 2fveq3 6925 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
43 fveq2 6920 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
4442, 43oveq12d 7466 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
45 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
46 ovex 7481 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
4744, 45, 46fvmpt3i 7034 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4841, 47syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4940, 48sylanl2 680 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
50 1re 11290 . . . . . . . . . . . 12 1 ∈ ℝ
51 elicopnf 13505 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
5250, 51ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
53 flge1nn 13872 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
5452, 53sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ)
5554adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ ℕ)
56 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
5755, 56eleqtrdi 2854 . . . . . . . 8 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘1))
5840, 23sylanl2 680 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
5949, 57, 58fsumser 15778 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6059mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
6139, 60eqtrid 2792 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
62 fveq2 6920 . . . . . . 7 (𝑚 = (⌊‘𝑥) → (seq1( + , 𝐹)‘𝑚) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
63 rpssre 13064 . . . . . . . . 9 + ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
6537, 64sstrid 4020 . . . . . . 7 (𝜑 → (1[,)+∞) ⊆ ℝ)
66 1zzd 12674 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
6744cbvmptv 5279 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6845, 67eqtri 2768 . . . . . . . . . . . 12 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6922, 68fmptd 7148 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℂ)
7069ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
7156, 66, 70serf 14081 . . . . . . . . 9 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
7271feqmptd 6990 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) = (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)))
73 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
7472, 73eqbrtrrd 5190 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)) ⇝ 𝑆)
7571ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (seq1( + , 𝐹)‘𝑚) ∈ ℂ)
7652simprbi 496 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7776adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7856, 62, 65, 66, 74, 75, 77climrlim2 15593 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆)
79 rlimo1 15663 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8078, 79syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8161, 80eqeltrd 2844 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1))
8224fmpttd 7149 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))):ℝ+⟶ℂ)
83 1red 11291 . . . . 5 (𝜑 → 1 ∈ ℝ)
8482, 64, 83o1resb 15612 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
8581, 84mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1))
86 o1const 15666 . . . 4 ((ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ) → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8763, 27, 86sylancr 586 . . 3 (𝜑 → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8824, 28, 85, 87o1mul2 15671 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1))
89 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
90 2z 12675 . . . . . . . . 9 2 ∈ ℤ
91 rpexpcl 14131 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
9289, 90, 91sylancl 585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
933nnrpd 13097 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
94 rpdivcl 13082 . . . . . . . 8 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
9592, 93, 94syl2an 595 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
96 dchrisum0lem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
9796divsqrsumf 27042 . . . . . . . 8 𝐻:ℝ+⟶ℝ
9897ffvelcdmi 7117 . . . . . . 7 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
9995, 98syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
10099recnd 11318 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℂ)
10123, 100mulcld 11310 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
1021, 101fsumcl 15781 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
10324, 28mulcld 11310 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
10425ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝐻𝑟 𝑈)
105104, 26syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑈 ∈ ℂ)
10623, 105mulcld 11310 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
1071, 101, 106fsumsub 15836 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
10823, 100, 105subdid 11746 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
109108sumeq2dv 15750 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
1101, 28, 23fsummulc1 15833 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))
111110oveq2d 7464 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
112107, 109, 1113eqtr4d 2790 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
113112mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))))
114100, 105subcld 11647 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈) ∈ ℂ)
11523, 114mulcld 11310 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
1161, 115fsumcl 15781 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
117116abscld 15485 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
118115abscld 15485 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
1191, 118fsumrecl 15782 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
120 1red 11291 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
1211, 115fsumabs 15849 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
122 rprege0 13072 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
123122adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
124123simpld 494 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
125 reflcl 13847 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
127126, 89rerpdivcld 13130 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
128 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
129128rprecred 13110 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
13023abscld 15485 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
13193rpsqrtcld 15460 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘𝑥)) → (√‘𝑚) ∈ ℝ+)
132131adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
133132rprecred 13110 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℝ)
134114abscld 15485 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℝ)
135132, 128rpdivcld 13116 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ+)
13663, 135sselid 4006 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ)
13723absge0d 15493 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
138114absge0d 15493 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)))
1392, 3, 16syl2an 595 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
140132rpcnd 13101 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
141132rpne0d 13104 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
142139, 140, 141absdivd 15504 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))))
143132rprege0d 13106 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)))
144 absid 15345 . . . . . . . . . . . . . . . 16 (((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)) → (abs‘(√‘𝑚)) = (√‘𝑚))
145143, 144syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑚)) = (√‘𝑚))
146145oveq2d 7464 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
147142, 146eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
148139abscld 15485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ∈ ℝ)
149 1red 11291 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
150 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝑍) = (Base‘𝑍)
15112ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
152 rpvmasum.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
153152nnnn0d 12613 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
1545, 150, 7znzrhfo 21589 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
155 fof 6834 . . . . . . . . . . . . . . . . . 18 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:ℤ⟶(Base‘𝑍))
157156adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
158 elfzelz 13584 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
159 ffvelcdm 7115 . . . . . . . . . . . . . . . 16 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
160157, 158, 159syl2an 595 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐿𝑚) ∈ (Base‘𝑍))
1614, 6, 5, 150, 151, 160dchrabs2 27324 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ≤ 1)
162148, 149, 132, 161lediv1dd 13157 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)) ≤ (1 / (√‘𝑚)))
163147, 162eqbrtrd 5188 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ (1 / (√‘𝑚)))
16496, 104divsqrtsum2 27044 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ ((𝑥↑2) / 𝑚) ∈ ℝ+) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16595, 164mpdan 686 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16692rprege0d 13106 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
167 sqrtdiv 15314 . . . . . . . . . . . . . . . . 17 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
168166, 93, 167syl2an 595 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
169122ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
170 sqrtsq 15318 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
171169, 170syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
172171oveq1d 7463 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
173168, 172eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
174173oveq2d 7464 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = (1 / (𝑥 / (√‘𝑚))))
175 rpcnne0 13075 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
176175ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177132rpcnne0d 13108 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
178 recdiv 12000 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
179176, 177, 178syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
180174, 179eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = ((√‘𝑚) / 𝑥))
181165, 180breqtrd 5192 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ ((√‘𝑚) / 𝑥))
182130, 133, 134, 136, 137, 138, 163, 181lemul12ad 12237 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
18323, 114absmuld 15503 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
184 1cnd 11285 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
185 dmdcan 12004 . . . . . . . . . . . . 13 ((((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
186177, 176, 184, 185syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
187135rpcnd 13101 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℂ)
188 reccl 11956 . . . . . . . . . . . . . 14 (((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) → (1 / (√‘𝑚)) ∈ ℂ)
189177, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℂ)
190187, 189mulcomd 11311 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
191186, 190eqtr3d 2782 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
192182, 183, 1913brtr4d 5198 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ (1 / 𝑥))
1931, 118, 129, 192fsumle 15847 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
194 flge0nn0 13871 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
195 hashfz1 14395 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
196123, 194, 1953syl 18 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
197196oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
19889rpreccld 13109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
199198rpcnd 13101 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
200 fsumconst 15838 . . . . . . . . . . 11 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
2011, 199, 200syl2anc 583 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
202126recnd 11318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℂ)
203175adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
204203simpld 494 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
205203simprd 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
206202, 204, 205divrecd 12073 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
207197, 201, 2063eqtr4d 2790 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
208193, 207breqtrd 5192 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((⌊‘𝑥) / 𝑥))
209 flle 13850 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
210124, 209syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
211124recnd 11318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
212211mulridd 11307 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
213210, 212breqtrrd 5194 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ (𝑥 · 1))
214 rpregt0 13071 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
215214adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
216 ledivmul 12171 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
217126, 120, 215, 216syl3anc 1371 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
218213, 217mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ≤ 1)
219119, 127, 120, 208, 218letrd 11447 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
220117, 119, 120, 121, 219letrd 11447 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
221220adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
22264, 116, 83, 83, 221elo1d 15582 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ 𝑂(1))
223113, 222eqeltrrd 2845 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))) ∈ 𝑂(1))
224102, 103, 223o1dif 15676 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1)))
22588, 224mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  (,)cioo 13407  [,)cico 13409  ...cfz 13567  cfl 13841  seqcseq 14052  cexp 14112  chash 14379  csqrt 15282  abscabs 15283  cli 15530  𝑟 crli 15531  𝑂(1)co1 15532  Σcsu 15734  Basecbs 17258  0gc0g 17499  ℤRHomczrh 21533  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-dchr 27295
This theorem is referenced by:  dchrisum0lem2  27580
  Copyright terms: Public domain W3C validator