MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   GIF version

Theorem dchrisum0lem2a 27561
Description: Lemma for dchrisum0 27564. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
Assertion
Ref Expression
dchrisum0lem2a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14014 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝜑)
3 elfznn 13593 . . . . 5 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
4 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4082 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
10 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
119, 10sselid 3981 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1211eldifad 3963 . . . . . . . 8 (𝜑𝑋𝐷)
1312adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
14 nnz 12634 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
164, 5, 6, 7, 13, 15dchrzrhcl 27289 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
17 nnrp 13046 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
1817adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1918rpsqrtcld 15450 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
2019rpcnd 13079 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
2119rpne0d 13082 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
2216, 20, 21divcld 12043 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
232, 3, 22syl2an 596 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
241, 23fsumcl 15769 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
25 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
26 rlimcl 15539 . . . . 5 (𝐻𝑟 𝑈𝑈 ∈ ℂ)
2725, 26syl 17 . . . 4 (𝜑𝑈 ∈ ℂ)
2827adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑈 ∈ ℂ)
29 0xr 11308 . . . . . . . . 9 0 ∈ ℝ*
30 0lt1 11785 . . . . . . . . 9 0 < 1
31 df-ioo 13391 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32 df-ico 13393 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
33 xrltletr 13199 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
3431, 32, 33ixxss1 13405 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
3529, 30, 34mp2an 692 . . . . . . . 8 (1[,)+∞) ⊆ (0(,)+∞)
36 ioorp 13465 . . . . . . . 8 (0(,)+∞) = ℝ+
3735, 36sseqtri 4032 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
38 resmpt 6055 . . . . . . 7 ((1[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
3937, 38ax-mp 5 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4037sseli 3979 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
413adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
42 2fveq3 6911 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
43 fveq2 6906 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
4442, 43oveq12d 7449 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
45 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
46 ovex 7464 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
4744, 45, 46fvmpt3i 7021 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4841, 47syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4940, 48sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
50 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
51 elicopnf 13485 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
5250, 51ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
53 flge1nn 13861 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
5452, 53sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ)
5554adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ ℕ)
56 nnuz 12921 . . . . . . . . 9 ℕ = (ℤ‘1)
5755, 56eleqtrdi 2851 . . . . . . . 8 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘1))
5840, 23sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
5949, 57, 58fsumser 15766 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6059mpteq2dva 5242 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
6139, 60eqtrid 2789 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
62 fveq2 6906 . . . . . . 7 (𝑚 = (⌊‘𝑥) → (seq1( + , 𝐹)‘𝑚) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
63 rpssre 13042 . . . . . . . . 9 + ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
6537, 64sstrid 3995 . . . . . . 7 (𝜑 → (1[,)+∞) ⊆ ℝ)
66 1zzd 12648 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
6744cbvmptv 5255 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6845, 67eqtri 2765 . . . . . . . . . . . 12 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6922, 68fmptd 7134 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℂ)
7069ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
7156, 66, 70serf 14071 . . . . . . . . 9 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
7271feqmptd 6977 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) = (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)))
73 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
7472, 73eqbrtrrd 5167 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)) ⇝ 𝑆)
7571ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (seq1( + , 𝐹)‘𝑚) ∈ ℂ)
7652simprbi 496 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7776adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7856, 62, 65, 66, 74, 75, 77climrlim2 15583 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆)
79 rlimo1 15653 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8078, 79syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8161, 80eqeltrd 2841 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1))
8224fmpttd 7135 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))):ℝ+⟶ℂ)
83 1red 11262 . . . . 5 (𝜑 → 1 ∈ ℝ)
8482, 64, 83o1resb 15602 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
8581, 84mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1))
86 o1const 15656 . . . 4 ((ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ) → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8763, 27, 86sylancr 587 . . 3 (𝜑 → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8824, 28, 85, 87o1mul2 15661 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1))
89 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
90 2z 12649 . . . . . . . . 9 2 ∈ ℤ
91 rpexpcl 14121 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
9289, 90, 91sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
933nnrpd 13075 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
94 rpdivcl 13060 . . . . . . . 8 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
9592, 93, 94syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
96 dchrisum0lem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
9796divsqrsumf 27024 . . . . . . . 8 𝐻:ℝ+⟶ℝ
9897ffvelcdmi 7103 . . . . . . 7 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
9995, 98syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
10099recnd 11289 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℂ)
10123, 100mulcld 11281 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
1021, 101fsumcl 15769 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
10324, 28mulcld 11281 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
10425ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝐻𝑟 𝑈)
105104, 26syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑈 ∈ ℂ)
10623, 105mulcld 11281 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
1071, 101, 106fsumsub 15824 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
10823, 100, 105subdid 11719 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
109108sumeq2dv 15738 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
1101, 28, 23fsummulc1 15821 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))
111110oveq2d 7447 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
112107, 109, 1113eqtr4d 2787 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
113112mpteq2dva 5242 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))))
114100, 105subcld 11620 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈) ∈ ℂ)
11523, 114mulcld 11281 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
1161, 115fsumcl 15769 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
117116abscld 15475 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
118115abscld 15475 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
1191, 118fsumrecl 15770 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
120 1red 11262 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
1211, 115fsumabs 15837 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
122 rprege0 13050 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
123122adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
124123simpld 494 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
125 reflcl 13836 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
127126, 89rerpdivcld 13108 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
128 simplr 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
129128rprecred 13088 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
13023abscld 15475 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
13193rpsqrtcld 15450 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘𝑥)) → (√‘𝑚) ∈ ℝ+)
132131adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
133132rprecred 13088 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℝ)
134114abscld 15475 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℝ)
135132, 128rpdivcld 13094 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ+)
13663, 135sselid 3981 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ)
13723absge0d 15483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
138114absge0d 15483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)))
1392, 3, 16syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
140132rpcnd 13079 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
141132rpne0d 13082 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
142139, 140, 141absdivd 15494 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))))
143132rprege0d 13084 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)))
144 absid 15335 . . . . . . . . . . . . . . . 16 (((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)) → (abs‘(√‘𝑚)) = (√‘𝑚))
145143, 144syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑚)) = (√‘𝑚))
146145oveq2d 7447 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
147142, 146eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
148139abscld 15475 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ∈ ℝ)
149 1red 11262 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
150 eqid 2737 . . . . . . . . . . . . . . 15 (Base‘𝑍) = (Base‘𝑍)
15112ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
152 rpvmasum.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
153152nnnn0d 12587 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
1545, 150, 7znzrhfo 21566 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
155 fof 6820 . . . . . . . . . . . . . . . . . 18 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:ℤ⟶(Base‘𝑍))
157156adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
158 elfzelz 13564 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
159 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
160157, 158, 159syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐿𝑚) ∈ (Base‘𝑍))
1614, 6, 5, 150, 151, 160dchrabs2 27306 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ≤ 1)
162148, 149, 132, 161lediv1dd 13135 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)) ≤ (1 / (√‘𝑚)))
163147, 162eqbrtrd 5165 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ (1 / (√‘𝑚)))
16496, 104divsqrtsum2 27026 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ ((𝑥↑2) / 𝑚) ∈ ℝ+) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16595, 164mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16692rprege0d 13084 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
167 sqrtdiv 15304 . . . . . . . . . . . . . . . . 17 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
168166, 93, 167syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
169122ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
170 sqrtsq 15308 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
171169, 170syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
172171oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
173168, 172eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
174173oveq2d 7447 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = (1 / (𝑥 / (√‘𝑚))))
175 rpcnne0 13053 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
176175ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177132rpcnne0d 13086 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
178 recdiv 11973 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
179176, 177, 178syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
180174, 179eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = ((√‘𝑚) / 𝑥))
181165, 180breqtrd 5169 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ ((√‘𝑚) / 𝑥))
182130, 133, 134, 136, 137, 138, 163, 181lemul12ad 12210 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
18323, 114absmuld 15493 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
184 1cnd 11256 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
185 dmdcan 11977 . . . . . . . . . . . . 13 ((((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
186177, 176, 184, 185syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
187135rpcnd 13079 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℂ)
188 reccl 11929 . . . . . . . . . . . . . 14 (((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) → (1 / (√‘𝑚)) ∈ ℂ)
189177, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℂ)
190187, 189mulcomd 11282 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
191186, 190eqtr3d 2779 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
192182, 183, 1913brtr4d 5175 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ (1 / 𝑥))
1931, 118, 129, 192fsumle 15835 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
194 flge0nn0 13860 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
195 hashfz1 14385 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
196123, 194, 1953syl 18 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
197196oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
19889rpreccld 13087 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
199198rpcnd 13079 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
200 fsumconst 15826 . . . . . . . . . . 11 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
2011, 199, 200syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
202126recnd 11289 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℂ)
203175adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
204203simpld 494 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
205203simprd 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
206202, 204, 205divrecd 12046 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
207197, 201, 2063eqtr4d 2787 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
208193, 207breqtrd 5169 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((⌊‘𝑥) / 𝑥))
209 flle 13839 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
210124, 209syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
211124recnd 11289 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
212211mulridd 11278 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
213210, 212breqtrrd 5171 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ (𝑥 · 1))
214 rpregt0 13049 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
215214adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
216 ledivmul 12144 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
217126, 120, 215, 216syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
218213, 217mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ≤ 1)
219119, 127, 120, 208, 218letrd 11418 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
220117, 119, 120, 121, 219letrd 11418 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
221220adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
22264, 116, 83, 83, 221elo1d 15572 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ 𝑂(1))
223113, 222eqeltrrd 2842 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))) ∈ 𝑂(1))
224102, 103, 223o1dif 15666 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1)))
22588, 224mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225  cres 5687  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  (,)cioo 13387  [,)cico 13389  ...cfz 13547  cfl 13830  seqcseq 14042  cexp 14102  chash 14369  csqrt 15272  abscabs 15273  cli 15520  𝑟 crli 15521  𝑂(1)co1 15522  Σcsu 15722  Basecbs 17247  0gc0g 17484  ℤRHomczrh 21510  ℤ/nczn 21513  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-qus 17554  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-dchr 27277
This theorem is referenced by:  dchrisum0lem2  27562
  Copyright terms: Public domain W3C validator