MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   GIF version

Theorem dchrisum0lem2a 27576
Description: Lemma for dchrisum0 27579. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
Assertion
Ref Expression
dchrisum0lem2a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14011 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝜑)
3 elfznn 13590 . . . . 5 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
4 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4092 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
10 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
119, 10sselid 3993 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1211eldifad 3975 . . . . . . . 8 (𝜑𝑋𝐷)
1312adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
14 nnz 12632 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
164, 5, 6, 7, 13, 15dchrzrhcl 27304 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
17 nnrp 13044 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
1817adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1918rpsqrtcld 15447 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
2019rpcnd 13077 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
2119rpne0d 13080 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
2216, 20, 21divcld 12041 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
232, 3, 22syl2an 596 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
241, 23fsumcl 15766 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
25 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
26 rlimcl 15536 . . . . 5 (𝐻𝑟 𝑈𝑈 ∈ ℂ)
2725, 26syl 17 . . . 4 (𝜑𝑈 ∈ ℂ)
2827adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑈 ∈ ℂ)
29 0xr 11306 . . . . . . . . 9 0 ∈ ℝ*
30 0lt1 11783 . . . . . . . . 9 0 < 1
31 df-ioo 13388 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32 df-ico 13390 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
33 xrltletr 13196 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
3431, 32, 33ixxss1 13402 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
3529, 30, 34mp2an 692 . . . . . . . 8 (1[,)+∞) ⊆ (0(,)+∞)
36 ioorp 13462 . . . . . . . 8 (0(,)+∞) = ℝ+
3735, 36sseqtri 4032 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
38 resmpt 6057 . . . . . . 7 ((1[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
3937, 38ax-mp 5 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4037sseli 3991 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
413adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
42 2fveq3 6912 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
43 fveq2 6907 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
4442, 43oveq12d 7449 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
45 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
46 ovex 7464 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
4744, 45, 46fvmpt3i 7021 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4841, 47syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4940, 48sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
50 1re 11259 . . . . . . . . . . . 12 1 ∈ ℝ
51 elicopnf 13482 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
5250, 51ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
53 flge1nn 13858 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
5452, 53sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ)
5554adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ ℕ)
56 nnuz 12919 . . . . . . . . 9 ℕ = (ℤ‘1)
5755, 56eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘1))
5840, 23sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
5949, 57, 58fsumser 15763 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6059mpteq2dva 5248 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
6139, 60eqtrid 2787 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
62 fveq2 6907 . . . . . . 7 (𝑚 = (⌊‘𝑥) → (seq1( + , 𝐹)‘𝑚) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
63 rpssre 13040 . . . . . . . . 9 + ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
6537, 64sstrid 4007 . . . . . . 7 (𝜑 → (1[,)+∞) ⊆ ℝ)
66 1zzd 12646 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
6744cbvmptv 5261 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6845, 67eqtri 2763 . . . . . . . . . . . 12 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
6922, 68fmptd 7134 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℂ)
7069ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
7156, 66, 70serf 14068 . . . . . . . . 9 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
7271feqmptd 6977 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) = (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)))
73 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
7472, 73eqbrtrrd 5172 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)) ⇝ 𝑆)
7571ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (seq1( + , 𝐹)‘𝑚) ∈ ℂ)
7652simprbi 496 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7776adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7856, 62, 65, 66, 74, 75, 77climrlim2 15580 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆)
79 rlimo1 15650 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8078, 79syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8161, 80eqeltrd 2839 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1))
8224fmpttd 7135 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))):ℝ+⟶ℂ)
83 1red 11260 . . . . 5 (𝜑 → 1 ∈ ℝ)
8482, 64, 83o1resb 15599 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
8581, 84mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1))
86 o1const 15653 . . . 4 ((ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ) → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8763, 27, 86sylancr 587 . . 3 (𝜑 → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
8824, 28, 85, 87o1mul2 15658 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1))
89 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
90 2z 12647 . . . . . . . . 9 2 ∈ ℤ
91 rpexpcl 14118 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
9289, 90, 91sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
933nnrpd 13073 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
94 rpdivcl 13058 . . . . . . . 8 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
9592, 93, 94syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
96 dchrisum0lem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
9796divsqrsumf 27039 . . . . . . . 8 𝐻:ℝ+⟶ℝ
9897ffvelcdmi 7103 . . . . . . 7 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
9995, 98syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
10099recnd 11287 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℂ)
10123, 100mulcld 11279 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
1021, 101fsumcl 15766 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
10324, 28mulcld 11279 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
10425ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝐻𝑟 𝑈)
105104, 26syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑈 ∈ ℂ)
10623, 105mulcld 11279 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
1071, 101, 106fsumsub 15821 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
10823, 100, 105subdid 11717 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
109108sumeq2dv 15735 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
1101, 28, 23fsummulc1 15818 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))
111110oveq2d 7447 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
112107, 109, 1113eqtr4d 2785 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
113112mpteq2dva 5248 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))))
114100, 105subcld 11618 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈) ∈ ℂ)
11523, 114mulcld 11279 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
1161, 115fsumcl 15766 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
117116abscld 15472 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
118115abscld 15472 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
1191, 118fsumrecl 15767 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
120 1red 11260 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
1211, 115fsumabs 15834 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
122 rprege0 13048 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
123122adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
124123simpld 494 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
125 reflcl 13833 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
127126, 89rerpdivcld 13106 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
128 simplr 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
129128rprecred 13086 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
13023abscld 15472 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
13193rpsqrtcld 15447 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘𝑥)) → (√‘𝑚) ∈ ℝ+)
132131adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
133132rprecred 13086 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℝ)
134114abscld 15472 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℝ)
135132, 128rpdivcld 13092 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ+)
13663, 135sselid 3993 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ)
13723absge0d 15480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
138114absge0d 15480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)))
1392, 3, 16syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
140132rpcnd 13077 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
141132rpne0d 13080 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
142139, 140, 141absdivd 15491 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))))
143132rprege0d 13082 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)))
144 absid 15332 . . . . . . . . . . . . . . . 16 (((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)) → (abs‘(√‘𝑚)) = (√‘𝑚))
145143, 144syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑚)) = (√‘𝑚))
146145oveq2d 7447 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
147142, 146eqtrd 2775 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
148139abscld 15472 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ∈ ℝ)
149 1red 11260 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
150 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝑍) = (Base‘𝑍)
15112ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
152 rpvmasum.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
153152nnnn0d 12585 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
1545, 150, 7znzrhfo 21584 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
155 fof 6821 . . . . . . . . . . . . . . . . . 18 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:ℤ⟶(Base‘𝑍))
157156adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
158 elfzelz 13561 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
159 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
160157, 158, 159syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐿𝑚) ∈ (Base‘𝑍))
1614, 6, 5, 150, 151, 160dchrabs2 27321 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ≤ 1)
162148, 149, 132, 161lediv1dd 13133 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)) ≤ (1 / (√‘𝑚)))
163147, 162eqbrtrd 5170 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ (1 / (√‘𝑚)))
16496, 104divsqrtsum2 27041 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ ((𝑥↑2) / 𝑚) ∈ ℝ+) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16595, 164mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16692rprege0d 13082 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
167 sqrtdiv 15301 . . . . . . . . . . . . . . . . 17 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
168166, 93, 167syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
169122ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
170 sqrtsq 15305 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
171169, 170syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
172171oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
173168, 172eqtrd 2775 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
174173oveq2d 7447 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = (1 / (𝑥 / (√‘𝑚))))
175 rpcnne0 13051 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
176175ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177132rpcnne0d 13084 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
178 recdiv 11971 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
179176, 177, 178syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
180174, 179eqtrd 2775 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = ((√‘𝑚) / 𝑥))
181165, 180breqtrd 5174 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ ((√‘𝑚) / 𝑥))
182130, 133, 134, 136, 137, 138, 163, 181lemul12ad 12208 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
18323, 114absmuld 15490 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
184 1cnd 11254 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
185 dmdcan 11975 . . . . . . . . . . . . 13 ((((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
186177, 176, 184, 185syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
187135rpcnd 13077 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℂ)
188 reccl 11927 . . . . . . . . . . . . . 14 (((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) → (1 / (√‘𝑚)) ∈ ℂ)
189177, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℂ)
190187, 189mulcomd 11280 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
191186, 190eqtr3d 2777 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
192182, 183, 1913brtr4d 5180 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ (1 / 𝑥))
1931, 118, 129, 192fsumle 15832 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
194 flge0nn0 13857 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
195 hashfz1 14382 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
196123, 194, 1953syl 18 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
197196oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
19889rpreccld 13085 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
199198rpcnd 13077 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
200 fsumconst 15823 . . . . . . . . . . 11 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
2011, 199, 200syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
202126recnd 11287 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℂ)
203175adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
204203simpld 494 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
205203simprd 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
206202, 204, 205divrecd 12044 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
207197, 201, 2063eqtr4d 2785 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
208193, 207breqtrd 5174 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((⌊‘𝑥) / 𝑥))
209 flle 13836 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
210124, 209syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
211124recnd 11287 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
212211mulridd 11276 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
213210, 212breqtrrd 5176 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ (𝑥 · 1))
214 rpregt0 13047 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
215214adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
216 ledivmul 12142 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
217126, 120, 215, 216syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
218213, 217mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ≤ 1)
219119, 127, 120, 208, 218letrd 11416 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
220117, 119, 120, 121, 219letrd 11416 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
221220adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
22264, 116, 83, 83, 221elo1d 15569 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ 𝑂(1))
223113, 222eqeltrrd 2840 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))) ∈ 𝑂(1))
224102, 103, 223o1dif 15663 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1)))
22588, 224mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  cres 5691  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  (,)cioo 13384  [,)cico 13386  ...cfz 13544  cfl 13827  seqcseq 14039  cexp 14099  chash 14366  csqrt 15269  abscabs 15270  cli 15517  𝑟 crli 15518  𝑂(1)co1 15519  Σcsu 15719  Basecbs 17245  0gc0g 17486  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-o1 15523  df-lo1 15524  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-qus 17556  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-dchr 27292
This theorem is referenced by:  dchrisum0lem2  27577
  Copyright terms: Public domain W3C validator