| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13275 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 13313 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | ovex 7385 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
| 4 | 3 | elpw 4553 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 5 | 2, 4 | mpbir 231 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 6 | 1, 5 | eqeltrrdi 2840 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 7 | 6 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 8 | df-ioo 13255 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | 8 | fmpo 8006 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 𝒫 cpw 4549 class class class wbr 5093 × cxp 5617 ⟶wf 6483 (class class class)co 7352 ℝcr 11011 ℝ*cxr 11151 < clt 11152 (,)cioo 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-ioo 13255 |
| This theorem is referenced by: unirnioo 13355 dfioo2 13356 ioorebas 13357 qtopbaslem 24679 retopbas 24681 qdensere 24690 blssioo 24716 tgioo 24717 tgqioo 24721 re2ndc 24722 xrtgioo 24728 xrge0tsms 24756 bndth 24890 ovolfioo 25401 ovollb 25413 ovolicc2 25456 ovolfs2 25505 ioorf 25507 ioorinv 25510 ioorcl 25511 uniiccdif 25512 uniioovol 25513 uniiccvol 25514 uniioombllem2 25517 uniioombllem3a 25518 uniioombllem3 25519 uniioombllem4 25520 uniioombllem5 25521 uniioombl 25523 opnmblALT 25537 mbfdm 25560 mbfima 25564 mbfid 25569 ismbfd 25573 mbfimaopnlem 25589 i1fd 25615 xrge0tsmsd 33049 iccllysconn 35301 rellysconn 35302 relowlssretop 37414 relowlpssretop 37415 ftc1anc 37747 ftc2nc 37748 ioofun 45656 islptre 45724 volioof 46090 fvvolioof 46092 ovolval3 46750 ovolval4lem1 46752 ovolval5lem2 46756 ovolval5lem3 46757 |
| Copyright terms: Public domain | W3C validator |