| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13393 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 13430 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | ovex 7446 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
| 4 | 3 | elpw 4584 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 5 | 2, 4 | mpbir 231 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 6 | 1, 5 | eqeltrrdi 2842 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 7 | 6 | rgen2 3186 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 8 | df-ioo 13373 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | 8 | fmpo 8075 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5123 × cxp 5663 ⟶wf 6537 (class class class)co 7413 ℝcr 11136 ℝ*cxr 11276 < clt 11277 (,)cioo 13369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-ioo 13373 |
| This theorem is referenced by: unirnioo 13471 dfioo2 13472 ioorebas 13473 qtopbaslem 24715 retopbas 24717 qdensere 24726 blssioo 24752 tgioo 24753 tgqioo 24757 re2ndc 24758 xrtgioo 24764 xrge0tsms 24792 bndth 24926 ovolfioo 25438 ovollb 25450 ovolicc2 25493 ovolfs2 25542 ioorf 25544 ioorinv 25547 ioorcl 25548 uniiccdif 25549 uniioovol 25550 uniiccvol 25551 uniioombllem2 25554 uniioombllem3a 25555 uniioombllem3 25556 uniioombllem4 25557 uniioombllem5 25558 uniioombl 25560 opnmblALT 25574 mbfdm 25597 mbfima 25601 mbfid 25606 ismbfd 25610 mbfimaopnlem 25626 i1fd 25652 xrge0tsmsd 33004 iccllysconn 35214 rellysconn 35215 relowlssretop 37323 relowlpssretop 37324 ftc1anc 37667 ftc2nc 37668 ioofun 45521 islptre 45591 volioof 45959 fvvolioof 45961 ovolval3 46619 ovolval4lem1 46621 ovolval5lem2 46625 ovolval5lem3 46626 |
| Copyright terms: Public domain | W3C validator |