| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13337 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 13375 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | ovex 7423 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
| 4 | 3 | elpw 4570 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 5 | 2, 4 | mpbir 231 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 6 | 1, 5 | eqeltrrdi 2838 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 7 | 6 | rgen2 3178 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 8 | df-ioo 13317 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | 8 | fmpo 8050 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 × cxp 5639 ⟶wf 6510 (class class class)co 7390 ℝcr 11074 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 |
| This theorem is referenced by: unirnioo 13417 dfioo2 13418 ioorebas 13419 qtopbaslem 24653 retopbas 24655 qdensere 24664 blssioo 24690 tgioo 24691 tgqioo 24695 re2ndc 24696 xrtgioo 24702 xrge0tsms 24730 bndth 24864 ovolfioo 25375 ovollb 25387 ovolicc2 25430 ovolfs2 25479 ioorf 25481 ioorinv 25484 ioorcl 25485 uniiccdif 25486 uniioovol 25487 uniiccvol 25488 uniioombllem2 25491 uniioombllem3a 25492 uniioombllem3 25493 uniioombllem4 25494 uniioombllem5 25495 uniioombl 25497 opnmblALT 25511 mbfdm 25534 mbfima 25538 mbfid 25543 ismbfd 25547 mbfimaopnlem 25563 i1fd 25589 xrge0tsmsd 33009 iccllysconn 35244 rellysconn 35245 relowlssretop 37358 relowlpssretop 37359 ftc1anc 37702 ftc2nc 37703 ioofun 45556 islptre 45624 volioof 45992 fvvolioof 45994 ovolval3 46652 ovolval4lem1 46654 ovolval5lem2 46658 ovolval5lem3 46659 |
| Copyright terms: Public domain | W3C validator |