| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13330 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 13368 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | ovex 7420 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
| 4 | 3 | elpw 4567 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 5 | 2, 4 | mpbir 231 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 6 | 1, 5 | eqeltrrdi 2837 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 7 | 6 | rgen2 3177 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 8 | df-ioo 13310 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | 8 | fmpo 8047 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 × cxp 5636 ⟶wf 6507 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: unirnioo 13410 dfioo2 13411 ioorebas 13412 qtopbaslem 24646 retopbas 24648 qdensere 24657 blssioo 24683 tgioo 24684 tgqioo 24688 re2ndc 24689 xrtgioo 24695 xrge0tsms 24723 bndth 24857 ovolfioo 25368 ovollb 25380 ovolicc2 25423 ovolfs2 25472 ioorf 25474 ioorinv 25477 ioorcl 25478 uniiccdif 25479 uniioovol 25480 uniiccvol 25481 uniioombllem2 25484 uniioombllem3a 25485 uniioombllem3 25486 uniioombllem4 25487 uniioombllem5 25488 uniioombl 25490 opnmblALT 25504 mbfdm 25527 mbfima 25531 mbfid 25536 ismbfd 25540 mbfimaopnlem 25556 i1fd 25582 xrge0tsmsd 33002 iccllysconn 35237 rellysconn 35238 relowlssretop 37351 relowlpssretop 37352 ftc1anc 37695 ftc2nc 37696 ioofun 45549 islptre 45617 volioof 45985 fvvolioof 45987 ovolval3 46645 ovolval4lem1 46647 ovolval5lem2 46651 ovolval5lem3 46652 |
| Copyright terms: Public domain | W3C validator |