MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioof Structured version   Visualization version   GIF version

Theorem ioof 13456
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 13380 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 13417 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 ovex 7450 . . . . . 6 (𝑥(,)𝑦) ∈ V
43elpw 4607 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
52, 4mpbir 230 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
61, 5eqeltrrdi 2834 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
76rgen2 3188 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
8 df-ioo 13360 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
98fmpo 8071 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
107, 9mpbi 229 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 394  wcel 2098  wral 3051  {crab 3419  wss 3945  𝒫 cpw 4603   class class class wbr 5148   × cxp 5675  wf 6543  (class class class)co 7417  cr 11137  *cxr 11277   < clt 11278  (,)cioo 13356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-1st 7992  df-2nd 7993  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-ioo 13360
This theorem is referenced by:  unirnioo  13458  dfioo2  13459  ioorebas  13460  qtopbaslem  24705  retopbas  24707  qdensere  24716  blssioo  24741  tgioo  24742  tgqioo  24746  re2ndc  24747  xrtgioo  24752  xrge0tsms  24780  bndth  24914  ovolfioo  25426  ovollb  25438  ovolicc2  25481  ovolfs2  25530  ioorf  25532  ioorinv  25535  ioorcl  25536  uniiccdif  25537  uniioovol  25538  uniiccvol  25539  uniioombllem2  25542  uniioombllem3a  25543  uniioombllem3  25544  uniioombllem4  25545  uniioombllem5  25546  uniioombl  25548  opnmblALT  25562  mbfdm  25585  mbfima  25589  mbfid  25594  ismbfd  25598  mbfimaopnlem  25614  i1fd  25640  xrge0tsmsd  32828  iccllysconn  34930  rellysconn  34931  relowlssretop  36912  relowlpssretop  36913  ftc1anc  37244  ftc2nc  37245  ioofun  44999  islptre  45070  volioof  45438  fvvolioof  45440  ovolval3  46098  ovolval4lem1  46100  ovolval5lem2  46104  ovolval5lem3  46105
  Copyright terms: Public domain W3C validator