![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 13345 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ioossre 13382 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
3 | ovex 7439 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
4 | 3 | elpw 4606 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
5 | 2, 4 | mpbir 230 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
6 | 1, 5 | eqeltrrdi 2843 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
7 | 6 | rgen2 3198 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
8 | df-ioo 13325 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | 8 | fmpo 8051 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
10 | 7, 9 | mpbi 229 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∈ wcel 2107 ∀wral 3062 {crab 3433 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 × cxp 5674 ⟶wf 6537 (class class class)co 7406 ℝcr 11106 ℝ*cxr 11244 < clt 11245 (,)cioo 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-ioo 13325 |
This theorem is referenced by: unirnioo 13423 dfioo2 13424 ioorebas 13425 qtopbaslem 24267 retopbas 24269 qdensere 24278 blssioo 24303 tgioo 24304 tgqioo 24308 re2ndc 24309 xrtgioo 24314 xrge0tsms 24342 bndth 24466 ovolfioo 24976 ovollb 24988 ovolicc2 25031 ovolfs2 25080 ioorf 25082 ioorinv 25085 ioorcl 25086 uniiccdif 25087 uniioovol 25088 uniiccvol 25089 uniioombllem2 25092 uniioombllem3a 25093 uniioombllem3 25094 uniioombllem4 25095 uniioombllem5 25096 uniioombl 25098 opnmblALT 25112 mbfdm 25135 mbfima 25139 mbfid 25144 ismbfd 25148 mbfimaopnlem 25164 i1fd 25190 xrge0tsmsd 32197 iccllysconn 34230 rellysconn 34231 relowlssretop 36233 relowlpssretop 36234 ftc1anc 36558 ftc2nc 36559 ioofun 44251 islptre 44322 volioof 44690 fvvolioof 44692 ovolval3 45350 ovolval4lem1 45352 ovolval5lem2 45356 ovolval5lem3 45357 |
Copyright terms: Public domain | W3C validator |