MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioof Structured version   Visualization version   GIF version

Theorem ioof 13339
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 13261 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 13299 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 ovex 7374 . . . . . 6 (𝑥(,)𝑦) ∈ V
43elpw 4552 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
52, 4mpbir 231 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
61, 5eqeltrrdi 2838 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
76rgen2 3170 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
8 df-ioo 13241 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
98fmpo 7995 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
107, 9mpbi 230 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2110  wral 3045  {crab 3393  wss 3900  𝒫 cpw 4548   class class class wbr 5089   × cxp 5612  wf 6473  (class class class)co 7341  cr 10997  *cxr 11137   < clt 11138  (,)cioo 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-ioo 13241
This theorem is referenced by:  unirnioo  13341  dfioo2  13342  ioorebas  13343  qtopbaslem  24666  retopbas  24668  qdensere  24677  blssioo  24703  tgioo  24704  tgqioo  24708  re2ndc  24709  xrtgioo  24715  xrge0tsms  24743  bndth  24877  ovolfioo  25388  ovollb  25400  ovolicc2  25443  ovolfs2  25492  ioorf  25494  ioorinv  25497  ioorcl  25498  uniiccdif  25499  uniioovol  25500  uniiccvol  25501  uniioombllem2  25504  uniioombllem3a  25505  uniioombllem3  25506  uniioombllem4  25507  uniioombllem5  25508  uniioombl  25510  opnmblALT  25524  mbfdm  25547  mbfima  25551  mbfid  25556  ismbfd  25560  mbfimaopnlem  25576  i1fd  25602  xrge0tsmsd  33032  iccllysconn  35262  rellysconn  35263  relowlssretop  37376  relowlpssretop  37377  ftc1anc  37720  ftc2nc  37721  ioofun  45570  islptre  45638  volioof  46004  fvvolioof  46006  ovolval3  46664  ovolval4lem1  46666  ovolval5lem2  46670  ovolval5lem3  46671
  Copyright terms: Public domain W3C validator