MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioof Structured version   Visualization version   GIF version

Theorem ioof 13368
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 13290 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 13328 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 ovex 7386 . . . . . 6 (𝑥(,)𝑦) ∈ V
43elpw 4557 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
52, 4mpbir 231 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
61, 5eqeltrrdi 2837 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
76rgen2 3169 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
8 df-ioo 13270 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
98fmpo 8010 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
107, 9mpbi 230 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wral 3044  {crab 3396  wss 3905  𝒫 cpw 4553   class class class wbr 5095   × cxp 5621  wf 6482  (class class class)co 7353  cr 11027  *cxr 11167   < clt 11168  (,)cioo 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ioo 13270
This theorem is referenced by:  unirnioo  13370  dfioo2  13371  ioorebas  13372  qtopbaslem  24662  retopbas  24664  qdensere  24673  blssioo  24699  tgioo  24700  tgqioo  24704  re2ndc  24705  xrtgioo  24711  xrge0tsms  24739  bndth  24873  ovolfioo  25384  ovollb  25396  ovolicc2  25439  ovolfs2  25488  ioorf  25490  ioorinv  25493  ioorcl  25494  uniiccdif  25495  uniioovol  25496  uniiccvol  25497  uniioombllem2  25500  uniioombllem3a  25501  uniioombllem3  25502  uniioombllem4  25503  uniioombllem5  25504  uniioombl  25506  opnmblALT  25520  mbfdm  25543  mbfima  25547  mbfid  25552  ismbfd  25556  mbfimaopnlem  25572  i1fd  25598  xrge0tsmsd  33028  iccllysconn  35222  rellysconn  35223  relowlssretop  37336  relowlpssretop  37337  ftc1anc  37680  ftc2nc  37681  ioofun  45533  islptre  45601  volioof  45969  fvvolioof  45971  ovolval3  46629  ovolval4lem1  46631  ovolval5lem2  46635  ovolval5lem3  46636
  Copyright terms: Public domain W3C validator