| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13386 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 13424 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | ovex 7438 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
| 4 | 3 | elpw 4579 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 5 | 2, 4 | mpbir 231 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 6 | 1, 5 | eqeltrrdi 2843 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 7 | 6 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 8 | df-ioo 13366 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | 8 | fmpo 8067 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 × cxp 5652 ⟶wf 6527 (class class class)co 7405 ℝcr 11128 ℝ*cxr 11268 < clt 11269 (,)cioo 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 |
| This theorem is referenced by: unirnioo 13466 dfioo2 13467 ioorebas 13468 qtopbaslem 24697 retopbas 24699 qdensere 24708 blssioo 24734 tgioo 24735 tgqioo 24739 re2ndc 24740 xrtgioo 24746 xrge0tsms 24774 bndth 24908 ovolfioo 25420 ovollb 25432 ovolicc2 25475 ovolfs2 25524 ioorf 25526 ioorinv 25529 ioorcl 25530 uniiccdif 25531 uniioovol 25532 uniiccvol 25533 uniioombllem2 25536 uniioombllem3a 25537 uniioombllem3 25538 uniioombllem4 25539 uniioombllem5 25540 uniioombl 25542 opnmblALT 25556 mbfdm 25579 mbfima 25583 mbfid 25588 ismbfd 25592 mbfimaopnlem 25608 i1fd 25634 xrge0tsmsd 33056 iccllysconn 35272 rellysconn 35273 relowlssretop 37381 relowlpssretop 37382 ftc1anc 37725 ftc2nc 37726 ioofun 45580 islptre 45648 volioof 46016 fvvolioof 46018 ovolval3 46676 ovolval4lem1 46678 ovolval5lem2 46682 ovolval5lem3 46683 |
| Copyright terms: Public domain | W3C validator |