![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioof | Structured version Visualization version GIF version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 12448 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ioossre 12484 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
3 | ovex 6910 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V | |
4 | 3 | elpw 4355 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
5 | 2, 4 | mpbir 223 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
6 | 1, 5 | syl6eqelr 2887 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
7 | 6 | rgen2a 3158 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
8 | df-ioo 12428 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | 8 | fmpt2 7473 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
10 | 7, 9 | mpbi 222 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∈ wcel 2157 ∀wral 3089 {crab 3093 ⊆ wss 3769 𝒫 cpw 4349 class class class wbr 4843 × cxp 5310 ⟶wf 6097 (class class class)co 6878 ℝcr 10223 ℝ*cxr 10362 < clt 10363 (,)cioo 12424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-ioo 12428 |
This theorem is referenced by: unirnioo 12523 dfioo2 12524 ioorebas 12525 qtopbaslem 22890 retopbas 22892 qdensere 22901 blssioo 22926 tgioo 22927 tgqioo 22931 re2ndc 22932 xrtgioo 22937 xrge0tsms 22965 bndth 23085 ovolfioo 23575 ovollb 23587 ovolicc2 23630 ovolfs2 23679 ioorf 23681 ioorinv 23684 ioorcl 23685 uniiccdif 23686 uniioovol 23687 uniiccvol 23688 uniioombllem2 23691 uniioombllem3a 23692 uniioombllem3 23693 uniioombllem4 23694 uniioombllem5 23695 uniioombl 23697 opnmblALT 23711 mbfdm 23734 mbfima 23738 mbfid 23743 ismbfd 23747 mbfimaopnlem 23763 i1fd 23789 xrge0tsmsd 30301 iccllysconn 31749 rellysconn 31750 relowlssretop 33709 relowlpssretop 33710 ftc1anc 33981 ftc2nc 33982 ioofun 40522 islptre 40595 volioof 40947 fvvolioof 40949 ovolval3 41607 ovolval4lem1 41609 ovolval5lem2 41613 ovolval5lem3 41614 |
Copyright terms: Public domain | W3C validator |