MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioof Structured version   Visualization version   GIF version

Theorem ioof 13484
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 13408 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 13445 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 ovex 7464 . . . . . 6 (𝑥(,)𝑦) ∈ V
43elpw 4609 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
52, 4mpbir 231 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
61, 5eqeltrrdi 2848 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
76rgen2 3197 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
8 df-ioo 13388 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
98fmpo 8092 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
107, 9mpbi 230 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2106  wral 3059  {crab 3433  wss 3963  𝒫 cpw 4605   class class class wbr 5148   × cxp 5687  wf 6559  (class class class)co 7431  cr 11152  *cxr 11292   < clt 11293  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388
This theorem is referenced by:  unirnioo  13486  dfioo2  13487  ioorebas  13488  qtopbaslem  24795  retopbas  24797  qdensere  24806  blssioo  24831  tgioo  24832  tgqioo  24836  re2ndc  24837  xrtgioo  24842  xrge0tsms  24870  bndth  25004  ovolfioo  25516  ovollb  25528  ovolicc2  25571  ovolfs2  25620  ioorf  25622  ioorinv  25625  ioorcl  25626  uniiccdif  25627  uniioovol  25628  uniiccvol  25629  uniioombllem2  25632  uniioombllem3a  25633  uniioombllem3  25634  uniioombllem4  25635  uniioombllem5  25636  uniioombl  25638  opnmblALT  25652  mbfdm  25675  mbfima  25679  mbfid  25684  ismbfd  25688  mbfimaopnlem  25704  i1fd  25730  xrge0tsmsd  33048  iccllysconn  35235  rellysconn  35236  relowlssretop  37346  relowlpssretop  37347  ftc1anc  37688  ftc2nc  37689  ioofun  45504  islptre  45575  volioof  45943  fvvolioof  45945  ovolval3  46603  ovolval4lem1  46605  ovolval5lem2  46609  ovolval5lem3  46610
  Copyright terms: Public domain W3C validator